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PREFACE

This report was conducted as part of the Evaluation of Environmental Investments Research Program
(EEIRP).  The EEIRP is sponsored by Headquarters, U.S. Army Corps of Engineers (HQUSACE).  It is jointly
assigned to the U.S. Army Engineer Water Resources Support Center (WRSC), Institute for Water Resources
(IWR), and the U.S. Army Engineer Waterways Experiment Station (WES), Environmental lab (EL).  Mr.
William J.  Hansen of IWR is the Program Manager, and Mr. H. Roger Hamilton is the WES Manager.  Program
Monitors during this study were Mr. John W. Bellinger and Mr. K. Brad Fowler, HQUSACE.  The field review
group members that provide complete program direction and their District or Division affiliations are Mr. David
Carney, New Orleans District; Mr. Larry Kilgo, Lower Mississippi Valley Division; Mr. Richard Gorton, Omaha
District; Mr. Bruce D. Carlson, St. Paul District; Mr. Glendon L. Coffee, Mobile District; Ms. Susan E. Durden,
Savannah District; Mr. Scott Miner, San Francisco District; Mr. Robert F. Scott, Fort Worth District; Mr.
Clifford J. Kidd, Baltimore District; Mr. Edwin J. Woodruff, North Pacific Division; and Dr. Michael Passmore,
formerly of Walla Walla District.  The work was conducted under the Incorporating Risk and Uncertainty Into
Environmental Evaluation Work Unit of the EEIRP.  Mr. L. Leigh Skaggs of the Technical Analysis and Research
Division (TARD), IWR and Mr. Richard Kasul of the Natural Resources Division (NRD), WES are the Principal
Investigators.

The work was performed by The Greeley-Polhemus Group, Inc. (GPG) under Task Order No. 5, Contract
No. DACW-72-95-D-0002, managed by Mr. Leigh Skaggs.  Dr. Charles Yoe, a principal of GPG, was the
principal author, assisted by Leigh Skaggs.

The report was prepared under the general supervision at IWR of Mr. Michael Krouse, Chief, TARD;
and Mr. Kyle E.  Schilling, Director, IWR; and at EL of Dr. Robert M.  Engler, Chief, NRD and Dr. John W.
Keeley, Director, EL.
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EXECUTIVE SUMMARY

Ecosystem restoration projects are replete with uncertainties, large and small.  A major source of
uncertainty in many such projects is the environmental output of the project.  To estimate existing and future
environmental outputs, many U.S. Army Corps of Engineers’ projects rely on habitat evaluation models like the
Habitat Evaluation Procedures (HEP) developed by the U.S. Department of the Interior’s Fish and Wildlife
Service (U.S. Fish and Wildlife Service).  HEP analysis, as this process is called, relies on the estimation of the
number of habitat units that exist at a site under certain environmental conditions.  Habitat units are the simple
product of a number of acres of habitat and a habitat suitability index that indicates the relative suitability of
those acres for a particular wildlife species.  The habitat suitability index is based on the mathematical
manipulation of a set of habitat variables.

A case study is used to illustrate the role that habitat variable measurements play in the uncertainty that
attends the estimation of project outputs.  The lessons learned during the course of the case study investigation
can be grouped into three categories:  preparation, data collection and analysis.  During the preparation of the
risk-based analysis several things were learned.  First, it is necessary to realize that uncertainty exists, it cannot
be eliminated and it is best to address it explicitly.  Second, one must understand the nature of uncertainty and
how to think about it.  Third, the purpose of the risk analysis, to improve decision-making, must be clear to all.
Fourth, the major sources of uncertainty must be identified as soon as possible.  Fifth, care must be taken to
assure that everyone is using the language consistently.  Sixth, preparing ahead of time for the risk-based analysis
is important.

During the data collection stages of the risk-based analysis of project outputs more lessons were learned.
First, the field team must develop ground rules for data collection.  Second, it is best if during the site visit, the
team members work independently at collecting data and making measurements.  Third, analysts should avoid
using common heuristics like availability, representativeness, and anchoring to address uncertainty.  Fourth, at
the least, interval estimates should be used for every measurement taken.  Fifth, try to obtain all available primary
data.  Sixth, make sure you understand the models for which you are collecting data.  Seventh, pay special
attention to key variables affected by alternative plans.

Lessons learned during the analysis phase include the following.  First, don’t do more than you have to
do.  Second, some sensitivity analysis is always possible.  Third, Monte Carlo simulations are often possible.
Fourth, your risk-based analysis should interface with other study and reporting requirements, such as incremental
cost analysis.  Additional details on these and the preceding lessons learned can be found in the manual.

As a result of the lessons learned and prior experience with risk analysis, a flexible eight step set of
procedures was developed.  The major steps include the following: 1) Select the analytical framework for
estimating environmental outputs; 2) Identify the types and sources of uncertainty in your analysis; 3) Identify
the potential key variables in your analysis; 4) Design your risk analysis; 5) Carefully collect your data; 6)
Identify major uncertainties once your data are available; 7) Do your risk-based analysis; and, 8) Communicate
the results of your risk analysis.

To assist in the conduct of steps four and seven of the above procedures your risk analysis toolbox should
include a number of habitat evaluation models and techniques.  Although HEP analysis was used in the case
study, the procedures presented here are general enough to use with other kinds of models used to measure
ecosystem resources.  The value of using interval rather than point estimates is that they can be used to support
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sensitivity analysis and Monte Carlo simulations.  These are the two most commonly used techniques in this kind
of risk analysis.

The post hoc application of the procedures to the case study clearly indicates the feasibility of conducting
a risk-based analysis of ecosystem restoration project outputs.  Habitat suitability index models were reduced to
a spreadsheet format.  Monte Carlo process software was used to turn the simple HSI model into a Monte Carlo
simulation model.  The model was used to demonstrate the potential of such a tool.  Not only does simulation
yield a range of outputs, it also provides an estimate of the likelihood of any one level of output occurring.  This
will prove an invaluable tool where there are any significant threshold values for projects under investigation.

The primary conclusions of this research are simple and few:  1) Little risk analysis is currently being
done in ecosystem restoration projects; 2) Risk analysis for the sake of risk analysis has no place in ecosystem
restoration studies; 3)  If risk analysis is to be done, it must be inexpensive and straightforward and it must
enlighten the decision process; 4)  For risk analysis procedures to be helpful to environmental investment
decisions, they must be flexible and adaptable to the needs of the many different types of ecosystem restoration
studies being done; 5) The eight-step procedure presented in this manual has some potential for aiding the
incorporation of risk analysis into ecosystem restoration projects; and 6) Experimentation with the procedures
offered here and other approaches to risk analysis in ecosystem restoration are prime candidates for future
research in this field.
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An Eight Step Framework

1.  Select analytical framework for environmental outputs
2.  Identify types and sources of uncertainty
3.  Identify key potential variables
4.  Design risk analysis
5.  Collect data
6.  Identify major uncertainties
7.  Do risk-based analysis
8.  Communicate results of risk analysis

Corps’ Six Step Planning Model

1.  Identify problems and opportunities
2.  Inventory and forecast resources
3.  Formulate alternative plans
4.  Evaluate plan effects
5.  Compare plan effects 
6.  Select best plan

Source: P&G

CHAPTER ONE:  INTRODUCTION

INTRODUCTION

There can be no single standard procedure for incorporating risk and uncertainty analysis into all
ecosystem restoration projects.  Planners need to be creative and flexible when devising risk analysis
procedures for their projects.  Risk analysis has to be effective, efficient and appropriate for the task at hand.
Sometimes that will mean little or no risk analysis is necessary.  Other times it will require extensive analysis and
deliberation.  This requires judgment on the part of planners and decision-makers.

This manual offers some guidance (see
sidebar) and examples on how to incorporate
risk analysis into ecosystem restoration
projects.  It does so mindful of the time,
budget, and personnel constraints that
accompany these projects.  We want to
emphasize from the very outset that the most
sophisticated and detailed forms of risk
analysis are going to be appropriate in only a
very few cases.  Despite the need for creativity
and flexibility, and the rare need for extensive
analysis, it may be appropriate to develop

standard procedures to analyze risks associated with routine and narrow impact decisions.  These procedures can
help ensure uniformity in handling decisions the agency must make repeatedly. This manual presents some
standard procedures for the incorporation of risk analysis into the evaluation of  ecosystem restoration project
output for this subset of routine, narrow impact decisions.  The procedures also provide a framework that may
be adapted for more unique investigations.

PURPOSE

Ecosystem restoration became a budget priority for the
U.S. Army Corps of Engineers Civil Works program during the
1990s.  Ecosystem restoration provides a comprehensive
approach for assessing and addressing the problems associated
with disturbed and degraded ecological resources.  Ecosystem
restoration planning considers the roles of plant and animal
species and their habitats in larger community and ecosystem
frameworks.  The planning work is assumed to be conducted in
a systematic fashion consistent with the six-step planning
process identified in the Economic and Environmental
Principles and Guidelines for Water and Related Land
Resources Implementation Studies (also known as the P&G).
Projects formulated by this planning process are conceived in a comprehensive framework and context that
provide aquatic, wetland, and upland complexes with the potential for long-term survival as functioning systems.
This is often done by management of watershed hydrology to return hydrologic variability and other hydrologic
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values that have been affected by past human activities.  The primary goal of ecosystem restoration is to return
an ecosystem’s structure, function, and dynamic processes to a less degraded, natural condition.

Although the science of ecology is developing, we do not yet have a methodology for tackling applied
problems systematically.  There is still a great deal of experimentation and even guess work that goes into the
identification of ecosystem problems and opportunities, data collection and analysis, plan formulation and
evaluation.  Uncertainties abound in all aspects of ecosystem restoration planning (see, for example, Chapter Five
of IWR Report 96-R-8, An Introduction to Risk and Uncertainty in the Evaluation of Environmental
Investments).  Coping with these uncertainties can be complex and controversial.  Risk analysis can be used to
make better informed and more trustworthy decisions about the potential performance of ecosystem restoration
projects.  To the extent that risk analysis is used, it should be decision-driven .  That is, its sole purpose should
be informing choices available to planners, decision-makers, and the public to solve problems. 

The purpose of this manual is to develop procedures for incorporating risk analysis into some relatively
routine and narrow impact decisions that arise in  ecosystem restoration studies.  Specifically, this manual
presents procedures for incorporating risk analysis into the habitat evaluation component of an ecosystem
restoration study.  Because environmental mitigation and recreation components of Corps’ activities also can
make use of habitat evaluations, these procedures may be applicable to some of these efforts as well.

Project outputs are important aspects of every ecosystem restoration study.  Ecological outputs can be
diverse, unexpected and numerous.  They may include physical, chemical, and biological manifestations of
ecosystem processes.  Although socioeconomic outputs can be just as complex, involving a vast array of
communities, interest groups and their value systems, this manual focuses on ecological outputs as currently
estimated via an array of habitat evaluation methodologies. 

This manual offers a strategic approach and a set of principles for better understanding the risks involved
in estimating project outputs.  The principles are generally applicable to the risk-based estimation of ecological
outputs in any investigation.  These are not procedures in the classical sense that they are to be followed in a
routinized way for all situations.  They are intended to be flexible procedures that can be modified and improved
upon as warranted by the specific situation and needs of a study.

INTENDED AUDIENCE

The primary audience for this manual is U.S. Army Corps of Engineers personnel working on ecosystem
restoration projects. Ecosystem restoration studies are accomplished in a variety of ways throughout the Corps.
In some cases, a single Corps employee interacts with other government agency personnel and the public.  In other
cases, interdisciplinary teams of Corps employees are responsible for the study.  Many variations between the
individual and team approaches to ecosystem restoration planning are also in use.  Regardless of the manner in
which the Corps handles its studies, it is not likely that many, if any, Corps employees will think of themselves
as risk analysts.  Environmentalists do the environmental work.  Engineers do the engineering and economists
do the economics.  But who does the risk analysis?
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Because no one clearly has the responsibility for doing the risk analysis, this manual adopts the view that
it becomes everyone’s responsibility.  Hence, this manual is not geared toward any one discipline, but toward all
disciplines.

The secondary audience for this manual includes two groups.  First, are the non-Corps entities with an
interest in ecosystem restoration projects.  As risk analysis becomes more commonly incorporated into ecosystem
restoration studies it will become necessary for the Corps’ partners and publics to understand the rationale and
procedures for conducting these analyses.  Furthermore, it will be desirable that these same parties take an active
role in the design of the risk analysis so as to better assure it produces useful and acceptable decision-driven
information.

The second group in the secondary audience includes anyone interested in further exploring risk analysis
as it can be applied to planning problems.  Inasmuch as these procedures represent a strategic approach and a
flexible set of principles rather than a hard set of guidelines that must be followed, they are perfectly adaptable
to many other situations.  Thus, those doing risk analysis of any planning problem may find parts of this manual
of some generic interest, despite the fact it has been targeted for ecosystem restoration planners within the U.S.
Army Corps of Engineers.

ORGANIZATION OF MANUAL

Although there are seven chapters and two appendices in this manual, it can, to a great extent, be read
selectively.  If you just want to know what the procedures are, skip right to Chapter Four.  If you are interested
in an application using the procedures, see Chapter Six.  Nonetheless, it has been designed to be read from start
to finish.  

Chapter Two presents a case study of a Section 1135 study.   It is most valuable for the lessons that were1

learned in this initial attempt to incorporate some risk analysis into a U.S. Fish and Wildlife Service Habitat
Evaluation Procedures (HEP) analysis.  The lessons learned are detailed in Chapter Three.  These are the building
blocks for the procedures presented in Chapter Four. 

Chapter Five presents some of the risk analysis tools and techniques that are likely to be most useful in
a risk-based analysis of the environmental outputs of an ecosystem restoration project.  They also occupy a
central role in the application of the procedures found in Chapter Six. With the hindsight benefit of the lessons
learned from the original case study, a more complete and interesting risk analysis based on the same case study
is presented there.  This manual concludes with a summary and some conclusions in the last chapter.  The
appendices provide support and additional detail for materials presented throughout the manual.
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SUMMARY AND LOOK FORWARD

Although it is impossible and undesirable to develop a detailed set of standard procedures for
incorporating risk analysis into all ecosystem restoration project studies, this manual will present some
procedures that may be useful in the estimation of project outputs for some environmentally oriented projects.
Because these procedures will be presented as a strategic approach and a set of flexible principles, they are
adaptable and will often be helpful in incorporating risk analysis into more unique ecosystem restoration projects
or other projects with environmental and ecological components. 

The next chapter presents a case study based on an actual Corps project.  This case study is most
interesting for the lessons learned from it.  The insights gained from the case study provided the foundation for
the procedures presented in this manual.
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CHAPTER TWO:  LEARNING ON THE JOB, A CASE STUDY

INTRODUCTION

This chapter presents the results of a case study initiated as part of this research.  It begins with the
identification of the basic elements of the case study.  These elements will be of interest to all readers.  Next, the
chapter offers an overview introduction to the Habitat Evaluation Procedures (HEP) of the Department of the
Interior’s Fish and Wildlife Service (U.S. Fish and Wildlife Service) using the rainbow trout model as an
example.  Those familiar with the HEP analysis technique may safely skip this material.  A brief description of
the conduct of the case study precedes the presentation of the study results which include a deterministic estimate
of project outputs, a sensitivity analysis, and a preliminary risk-based analysis of project outputs. The case study
provided enough lessons learned so that when they were combined with what is already known about risk
analysis, they formed the basis for the procedures presented in this manual.  This makes the case study a valuable
lesson for anyone who might venture into risk analysis of ecosystem restoration projects.

IDENTIFYING A CASE STUDY

A nationwide search of Section 1135 studies was conducted by the Institute for Water Resources (IWR)
in order to identify a case study for this research effort.  Several candidate studies were identified.  The selection
criteria were basic:  the study’s habitat evaluation work had to be completed within a time frame compatible with
this research and the District had to be willing to offer their study as a case study.

This latter criterion is not an insignificant one.  It is not easy to invite people in to look over your
shoulder and to use your work as an object lesson for others.  Thus, in appreciation for the District’s cooperation
in this research, the actual case study will remain anonymous, although actual events will be described and real
data will be used throughout the case study.  The case study is called the Brown Sugar River and Sympathy Lake
HEP Analysis.

PROJECT BACKGROUND

Other than the name changes, the description that follows is real.  Sympathy Lake is located 85 miles
southeast of a major city on the Brown Sugar River about 12.8 miles above its confluence with the Midnight
River.  Brown Sugar River once supported a warm water fishery.  After the construction of Tentshow Dam, the
warm water fishery was adversely impacted by cold water releases from the dam for the generation of
hydroelectric power.  Re-establishment of the warm water fishery was not considered feasible and in the 1950s
the State Conservation Department began to introduce a cold water fish, the rainbow trout, to the Brown Sugar
River downstream of the dam.  This was done in response to intense public interest in a fishery to replace the
warm water fishery.  Figure 1 provides a stylized map of the project area.

A year-round cold water fishery could not be established because of low dissolved oxygen (DO) levels
that occur in the summer and early fall months along the lower Brown Sugar River.  During these months,
Sympathy Lake becomes thermally stratified with very low DO levels in the hypolimnion.  Because
the hydropower intakes are located at the lower elevations of the reservoir, the low DO hypolimnetic water is
released into the Brown Sugar River below the dam.



Figure 1: Map of Project Area
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Various studies have shown that low DO levels combined with lack of flow affect the survivability of
the downstream trout fishery.  In addition, these conditions also adversely affect the benthic community, which
is a major component of the food chain for the river’s aquatic community.  As a result, there is little or no growth
in the trout stocked in the river and there is little evidence that trout survive beyond the stocking year.  Despite
a reservoir release program, trout losses still occur. 

The District has proposed construction of a labyrinth-shaped weir spanning 242 feet of river about
2,000 feet downstream of Tentshow Dam.  The zig-zag configuration of the weir would result in an overall length
of about 2,100 feet.  The crest would be about 3.5 feet above normal water surface during power generation.
Water would flow over the weir crest at a depth of about 6 inches, creating a head differential across the weir of
about 4 feet.  Pipes would be installed in the weir to allow low flow releases from the weir.  The weir would be
constructed of treated timber stop logs that could be removed for emergencies.  The weir is expected to address
both the DO and low flow problems that have restricted the cold water fishery.  It would cost about $3.35 million
to construct and $1,000 annually to operate.  The primary benefit of the project would be a more viable cold water
fishery.2

There are eight alternative plans under consideration.  For simplicity, the alternatives will be numbered
1 through 8 and they are summarized in Table 1.  They all include the labyrinth-shaped weir.   The 25 cubic feet
per second (CFS) flow for Plan 1 is leakage from the dam.  The alternatives differ by the
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Table 1:  Brown Sugar River Sympathy Lake Alternative Plans

Plan Number Labyrinth Weir Minimum Flow (cfs) Pulses on Weekend

1 Yes None (25 cfs) None

2 Yes 100 cfs None

3 Yes 75 cfs None

4 Yes 75 cfs 1 hr.  at 4 PM

5 Yes 75 cfs 1 hr.  at noon

6 Yes 50 cfs None

7 Yes 50 cfs 1 hr.  at 4 PM

8 Yes 50 cfs 2 hr.  at 3 PM

presence and extent of a minimum flow and whether water is released in pulses on the weekend from Tentshow
Dam.  Plans 3, 4, and 5 are based on a two-day weekend.  Plans 6, 7, and 8 are based on three-day weekends.
The weir is considered to provide most of the desired DO effects.  The minimum flows and pulses affect water
temperature.

HABITAT EVALUATION METHODOLOGIES

Ecosystem function is difficult to describe and measure.  Habitat is one ecological resource that is
commonly used to represent ecosystem function.  In general, more habitat is assumed to indicate better ecosystem
function.  Thus, habitat improvements are commonly used as surrogate measures of ecosystem restoration project
outputs.

Habitat can be improved in two basic ways.  There can be an increase in the amount of habitat available
or there can be improvement in the quality of the habitat available.  Increases in the quantity and quality of habitat
are also possible.

Because there can be many different kinds of habitat in an ecosystem, a problem arises in describing
habitat improvements.  How do we describe such complex concepts in a compact yet serviceable way? Although
many options are available it is common practice to identify a few key species from an ecosystem and discuss the
changes in their habitats.  The presumption is that if the species are carefully chosen in a representative manner
this can reasonably serve as an indicator of the overall ecosystem function.  For example, if a species at the top
of the food chain is doing well, chances are good that the species below it in the food chain are also doing well.

Changes in the habitats of these indicator species are frequently measured in habitat units for the more
common and less complex ecosystem restoration studies.  A habitat unit is a theoretical indicator that combines
the quantity and quality dimensions of a habitat in a simple mathematical way.
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Habitat quantity is estimated as some physical quantity of terrestrial or aquatic habitat, usually acres.
Habitat quality or suitability, however, is quantified via an index number between zero and one.  An index of one
indicates the habitat in question is optimal for the specific indicator species under consideration.  An index of zero
indicates very poor habitat.  Intermediate values might indicate average habitat conditions, and so on. 

Changes in habitat units can be used to represent the ecological impacts of habitat unit activities or
planned improvements.  For example, suppose we have 10 acres of land with an average suitability index of 0.6.
Such land would yield 6 habitat units:

(1)    10 acres x 0.6 = 6.0 habitat units

Now suppose an ecosystem restoration plan would double the acres of habitat and increase their quality from 0.6
to 0.8.  The result would be 16 habitat units:

(2)    20 acres x 0.8 = 16 habitat units

The plan would result in a net output of 10 additional (16 habitat units with the plan minus 6 habitat units without
the plan) habitat units.  The increase of 10 habitat units is used to represent an improvement in overall ecosystem
function.  The true change in ecosystem function is usually far more complex and much more difficult to describe,
much less to quantify.  Until science is better able to describe and quantify ecosystem function in a cost-effective
manner, the use of surrogate measures like habitat units will remain a viable tool in decision-making.

There are many methods for estimating ecosystem function improvements in this general way.  The
process is much more an art than it is a science at this point in time.  Analysts can choose from among many
methodologies that rely on some variation of this quantity times quality approach to quantifying ecological
outputs.  The procedures developed in this manual are applicable to most of these methodologies.  To illustrate
the use of the procedures, however, the Habitat Evaluation Procedures methodology of the U.S. Fish and Wildlife
Service has been selected.  It was chosen because it is believed to be the methodology in widest use in the Corps’
ecological restoration studies at this time.

HABITAT EVALUATION PROCEDURES OF THE U.S. FISH AND WILDLIFE SERVICE

The philosophy and theory behind the HEP of the U.S. Fish and Wildlife Service are described at length
in two Ecological Service Manuals produced by U.S. Fish and Wildlife Service.  These are:  Habitat as a Basis
for Environmental Assessment, 101 ESM and Habitat Evaluation Procedures (HEP), ESM 102.  This section
provides a brief introduction to the HEP method of developing the index number used to represent habitat quality.
The HEP analysis index number is called the habitat suitability index (HSI).  The estimation of a habitat unit in
an HEP analysis can be formally defined as:

(3a)    Quantity x Quality = Habitat Units

(3b)    Acres x Habitat Suitability Index = Habitat Units



Figure 2:  Sample Suitability Index Graph
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An HSI conceptually reflects the overall suitability of an area of water or land for a particular indicator
species.  Information for estimating habitat suitability for a specific species can be found in a habitat suitability
model description published by the U.S. Fish and Wildlife Service.  For example, the next section describes the
Habitat Suitability Information:  Rainbow Trout, January 1984.

In general a habitat suitability model reviews the scientific literature pertaining to the species of interest.
From this literature review a set of habitat variables is identified.  These variables describe those environmental
factors that are important to the survival, growth and reproduction of the species.  For the rainbow trout, 18
habitat variables (labeled V  through V ) were identified.  They included things like the average maximum water1  18

temperature (EC) during the warmest period of the year and the average velocity (cm/sec) over spawning areas
during embryo development.

The suitability of a given habitat is evaluated in terms of each of the relevant habitat variables by means
of a suitability index (SI).  A suitability index graph for the rainbow trout is shown at Figure 2.  The curves were
built on the assumption that increments of the habitat variable plotted on the x-axis could be directly converted
into an index of suitability from 0.0 to 1.0 for the species.  Thus, the SI number is at best a science-based
subjective judgment on the part of the authors of the HSI model.  

The example in Figure 2 shows that when the percent of substrate in the 10-40 cm size group is zero,
the habitat is lacking in escape cover for fry and small juveniles.  Unlike an HSI of zero, an SI of zero need not
imply the habitat is totally unsuitable for the species.  The overall suitability of the habitat as reflected by the HSI
reflects a composite trade-off of the relative strengths and weaknesses of the habitat’s various characteristics.
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The various habitat variables are grouped into “components” that are sometimes called “life requisites.”
For example, the rainbow trout has a fry component (C ), an embryo component (C ), a juvenile component (C ),F     E     J

an adult component (C ), and an other component (C ) that can be subdivided into food (C ) and water qualityA      O        OF

(C ) components.  These components are mathematical combinations of the SI’s for the various habitat variablesOQ

that define that component.  Component values are also index numbers between zero and one.  For example, the
food component for trout is defined as follows:

where V  is predominant substrate type in riffle-run areas for food production; V  is percent fines in riffle-run9           16

areas during average summer flows; and, V  is average percent vegetational ground cover and canopy closure11

along the streambank for allochthonous input.  Suppose, for example, the SI’s for each of these variables are V9

= .5, V  = .6, and V  = .7.  Then the value of C  would be 0.596, say 0.6.  Model components are calculated11    16        OF

in a similar fashion for each model component.  The model components are then used to produce an HSI.  Thus,
the general progression of an HSI model is:

(5) Habitat variable measurements => Suitability indices => Component indices => Habitat suitability index

One of the most common methods for estimating an HSI is to use the minimum component value from among
the relevant component values for a particular model.  Another common HSI estimating algorithm is to multiply
the components together and take the root equal to the number of components.  For example, if there are three
components you might use the cube root of the product of the three component values.

Before considering the trout model more specifically, it bears repeating that this evaluation technique
may be science-based, but it is fundamentally a subjective art.  Analysts routinely adapt the HSI models to local
conditions and needs.  For example, because the rainbow trout is not an indigenous species in the case study area,
the river is stocked annually and no attempt is made to establish a breeding trout fishery.  In this case, there is
no need for embryo, fry, or juvenile components in estimating the HSI for the project area.

RAINBOW TROUT HABITAT SUITABILITY INDEX MODEL

Habitat Suitability Index: Rainbow Trout was prepared by Robert F. Raleigh, Terry Hickman, R.
Charles Solomon, and Patrick C. Nelson in January 1984 as report FWS/OBS-82/10.60.  The model, like most,
begins with a review of the scientific literature that summarizes what is known about the rainbow trout.  The
overall structure of the model is presented in Figure 3.  As described above, it shows habitat variables feeding
into model components that subsequently feed into the HSI.



Figure 3: Rainbow Trout HSI Model 
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Figure 4: Modified Rainbow Trout HSI Model
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The model itself is divided into lacustrine and riverine habitats for the trout.  In this case study, the goal
was to improve the riverine habitat for adult trout.  This did not require a model with all the complexity shown
in Figure 3.  The model actually used was an adaptation of this model and it is shown at Figure 4.

To aid the reader unfamiliar with HEP analysis, let’s take a look at two habitat variables that will be of
particular interest later in this manual.  The first is V , average maximum water temperature (EC) during the1

warmest period of the year.  Its suitability index graph is shown at Figure 5.  The second variable is average
minimum dissolved oxygen (mg/l) during the late growing season low water period and during embryo
development (V ).  It’s suitability index graph is shown at Figure 6.3

The District’s field team estimated V  for one reach to be 23.9 EC with a corresponding SI= .25.  V  was1              3

estimated to be 0 mg/l with a corresponding SI of 0.  In a similar fashion, using the suitability index graph, a
measurement for every variable estimated in the field was converted to a corresponding SI value.  The SI values
were used to estimate values for the model components.  The model components values, in turn, were used to
estimate the HSI.  

BROWN SUGAR RIVER AND SYMPATHY LAKE CASE STUDY

INTRODUCTION

The authors want to thank, without naming, the cooperating District and its personnel who so generously
gave their time and cooperation in this research effort.  This manual would not have been possible without their
cooperation.



Figure 5: Water Temperature Suitability Index Graph
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Figure 6: DO Suitability Index Graph

Average minimum dissolved oxygen (mg/l) during the late growing season low water period.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

mg/l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Suitability Index

Risk and Uncertainty Analysis Procedures
for the Evaluation of Environmental Outputs

13



Risk and Uncertainty Analysis Procedures 
for the Evaluation of Environmental Outputs

14

PREPARATION

Identification of the Brown Sugar River and Sympathy Lake project as a feasible case study took a
considerable amount of time and it offered a rather narrow window of opportunity.  Two researchers for this
project joined District personnel for the first time the morning that the HEP analysis field data were to be
collected.  Following an introduction to the project by the project manager, the researchers gave a brief overview
of this research effort and the purpose and methods of risk analysis.  By mid-morning, all were en route to the
project site.  

FIELD DATA COLLECTION

The District contracted the HEP analysis to the U.S. Fish and Wildlife Service.  The field team gathered
along the banks of the Brown Sugar River at an access point just downstream of the proposed weir site below
the Tentshow Dam.  The rainbow trout, channel catfish, and largemouth bass had been previously identified
as the suite of indicator species that would be used for the HEP analysis.

A standardized form listing all the habitat variables required to conduct HEP analyses for these three
species was prepared in advance of the site visit.  Organizing the set of variables on a single form eliminated the
redundancy that would have resulted had the team done a species-by-species evaluation. 

Initial estimates of habitat variables were the point estimates (e.g, 80% streamside vegetation (V )) to11

which these experts had been accustomed.  With an explanation and occasional prodding, they were willing to
estimate some, but not all, of the habitat variables as intervals  (e.g, 70-90% streamside vegetation (V  )).  There11

was not enough budget to make many field measurements using instruments, although oxygen, temperature, pH,
and flow measurements were taken at each of four data gathering points.  Data for these four variables were to
be supplemented with previously collected measurements.  

There seemed to be a certain amount of discomfort with the notion of using intervals to estimate habitat
variable values.  The team gathered at a single access point along the river at which it was possible to see perhaps
200 yards upstream and downstream of the access point.  Estimates of habitat variable conditions  made at this
location were used to represent 1.55 miles of river.  Subsequent single access points, with roughly similar
visibility, were used to estimate habitat variable conditions over reaches of 2.23 miles, 2.92 miles, and 1.00 mile
of river.  

Despite the fact that only a small portion of the river was visible and most estimates were subjective, the
team generally estimated a relatively small range of variation in conditions, when a range was estimated at all.
For example, consider trout habitat variable V , “percent instream cover during the late growing season low water6

period at depths $ 15 cm and velocities < 15 cm/sec.”  Initial estimates at the first access point were that this
would average about 3 percent over the 1.55 miles of river.  When the team discussed the variation in cover
visible from its location and possible variations over the stretch of river not visible to the team, all agreed there
was some uncertainty.  An interval estimate of from 2 to 5 percent replaced the point estimate of 3 percent.   The
range of uncertainty expressed by the team was often limited when the actual uncertainties seemed to be
potentially much greater.  The percent of midday shade, for example, was estimated to range from 1 to 2 percent.
The habitat variable measurements collected by the field team are presented in Appendix 1.
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3

HSI’s without the project.  The with project condition varies for each plan so 8 x 12 yields the 96 with project condition sets of HSI’s. 
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DISTRICT HEP ANALYSIS

About $9,000 had been budgeted to the U.S. Fish and Wildlife Service for this HEP analysis for this
purpose.  The results of this analysis are summarized in Table 2. There are eight plans, each addressing three
indicator species along four reaches.  That results in 12 sets of HSI’s without the project, 96 HSI’s with the
project, yielding 108 sets of habitat unit values, as well as 96 changes in habitat units .  For simplicity, only the3

change in habitat unit results for two plans are reported here.  The detail on the individual species and reaches
has been collapsed into to a single value, so as not to drown the reader in details.

Table 2:  Change in Habitat Units for Plans 1 and 2

Plan 1 2

Habitat Unit Increase 74.89 143.21

The values in Table 2 are very precise.  It’s clear that Plan 2 results in the greatest increase in habitat
units for all species and all locations. But are these numbers as accurate as they are precise?  These are the
numbers that are typically provided to decision-makers.  Numbers like these may lead Corps officials, State and
Federal resource agency personnel, and the public to believe that the outputs of this project are far more certain
than they in fact are.  As the next chapter will reveal in detail, there is good reason to think they are not as
accurate as they are often thought to be.

Okay, you might say, suppose these estimates are not exact.  Is that important?  Does it make a
difference?  Suppose the actual habitat improvements do vary some from these estimates.  If you concede that
point, the important question then becomes, “What do we mean by “some”?”  Are we likely to be off by one
habitat unit or 100 habitat units?  One habitat unit may make no difference at all, but 100 habitat units may be
the difference between saying yes or no to the project.  And if it could be off by 100 habitat units, how likely is
it to be off by that much?  Is that a one-in-a-million chance or is it a 50/50 proposition?

These are important questions.  If decision-makers have no information to help answer them, they could
make a bad decision about a project.  The best alternative might not be chosen.  Scarce resources might be
directed to a bad project rather than to a good one.  These questions can’t be answered unless they are specifically
investigated.  The certainty of an outcome is as subject to investigation as hydrology,  foundation conditions, or
any other detail of a project is.  Risk analysis is the broad name given to the collection of methods by which such
questions can be addressed.

One tool of risk analysis is sensitivity analysis.  Sensitivity analysis requires the analyst to define
different analytical scenarios.  The calculation of habitat units is repeated for each scenario.  Significant
differences in results can then be attributed to the differences among the scenarios.  In sensitivity analysis, the
analyst systematically changes the value of selected elements of the analysis and recalculates the results.  If the



Figure 7: Thalweg Depth Suitability Index Graph

Average thalweg depth (cm) during the late growing season low water period.
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change in the result, when compared to the best estimate or base measure, is insignificant then you can be
confident that the value that was systematically changed will have no material influence on the outcome.  

For example, suppose the thalweg depth in our best estimate of the change in habitat units for rainbow
trout is 61 cm.  Suppose there is some possibility the thalweg depth is as much as 122 cm.  In a sensitivity
analysis, we would change this value to 122 cm and recalculate the change in habitat units.  The change in
thalweg depth would have no impact on the change in habitat units because any value over 45 cm in depth is
optimal for trout as Figure 7 shows.  Therefore,  we can say with complete confidence in this instance, that the
difference in thalweg depths under consideration (i.e., 61-122cm) will have no impact on our decision.  On the
other hand, there may be uncertainty about another habitat variable that makes a significant difference for this
project.  Sensitivity analysis is a simple but valuable tool for introducing risk analysis into a study. 

As a result of the desire to incorporate some risk analysis into the evaluation of ecosystem restoration
projects, U.S. Fish and Wildlife Service personnel did some sensitivity analysis using the ranges of variable
values estimated in the field.  The values in Table 3 reflect some uncertainty in the potential outputs of the plans.
There is a 20 to 30 percent variation in project outputs using this simple sensitivity analysis.  Any number of
scenarios can be investigated in a sensitivity analysis.  Perhaps the most common set of scenarios include the
most likely condition as well as the worst and best case scenarios.  Worst and best case scenarios should represent
the worst and best possible outcomes that are reasonably foreseeable.  That is, they are not simply a bad outcome
and a good outcome.  In some situations, pessimistic and optimistic scenarios are used to represent bad and good
outcomes that are not necessarily the extreme
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Table 3: District Sensitivity Analysis for Selected Plans

Plan 1 2

Pessimistic Scenario Habitat Unit Increase 58.44 117.62

Most Likely Scenario Habitat Unit Increase 65.51 130.06

Optimistic Scenario Habitat Unit Increase 74.89 143.21

scenarios represented by a worst and best case analysis.  The U.S. Fish and Wildlife Service used their own
scenarios to produce pessimistic and optimistic scenarios.

RISK-BASED HEP ANALYSIS

In an effort to demonstrate the feasibility of incorporating risk analysis into the habitat evaluation portion
of a study, the data collected by the field team were used to build a model that simulates the range of results using
a Monte Carlo process.  The results shown in Table 4 do not vary too much from the sensitivity analysis. 

Table 4:  Selected Results of Risk-Based Estimate of Habitat Unit Increases

Plan 1 2

Minimum Habitat Unit Increase 71.23 89.23

Mean Habitat Unit Increase 73.02 96.44

Maximum Habitat Unit Increase 74.66 100.07

Briefly, the Monte Carlo simulation (discussed in more detail in Chapters Five and Six), used the same
ranges of habitat variables that the District used in its sensitivity analysis.  These ranges are shown in Appendix
1.  With a Monte Carlo process variable values are selected at random from the ranges of habitat variable values
(according to some prescribed probability distribution) and the HSI’s and HU’s are computed.  This process is
repeated a  large number of times, in this case 4,000 times.  Thus, instead of two extreme value estimates, the
Monte Carlo process generated a distribution of 4,000 values.  Selected outcomes of the simulation are presented
in Table 4. 

The extreme values shown in Table 4 differ from those in Table 3 primarily because the event of all
habitat variable values was to rare to be observed in a simulation of 4,000 iterations.  Presumably, a simulation
with many thousands more iterations would eventually reproduce the extreme values of the sensitivity analysis
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then estimate the probability of these extreme values to be 0.00001 or 1-in-100,000.  Thus, a simulation adds a powerful dimension to our analysis of
potential outcomes,  i.e. estimate s of their likelihood of occurrence.  These details will be explored in later chapters.
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along with an estimate of the probability with which those extreme values are likely to occur .  Most likely and4

mean values differ because the distributions assumed for the Monte Carlo simulation resulted in expected values
that sometimes differed from the most likely value used for the sensitivity analysis.

SUMMARY AND LOOK FORWARD

The case study used for this manual and the basics of HEP analysis were introduced in this chapter.  Field
experience demonstrated the feasibility of estimating habitat variables as intervals rather than as points.  Agency
personnel used the interval estimates to produce a simple sensitivity analysis within the original study budget and
schedule.  The same values were then used in a Monte Carlo simulation to estimate project outputs.  Thus, two
primary risk-analysis tools are introduced in this chapter. 

The results presented in this chapter clearly demonstrate the feasibility of conducting risk-based analysis
within the budgets and schedules of simple Section 1135 investigations.  The next chapter considers some of the
important lessons that were learned from this case study.  
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CHAPTER THREE:  LESSONS LEARNED

INTRODUCTION

Most ecosystem restoration studies rely on single-valued, deterministic results as the basis for major
decisions.  The professional integrity of the organizations and individuals doing the analysis is usually sufficient
justification for accepting the results.  Risk and uncertainty analysis, while it moves away from single-valued
deterministic analysis,  is not a challenge to anyone’s integrity or professional judgment.  Risk analysis simply
recognizes the realities of a complex and often difficult world and offers a systematic approach for investigating
and considering key uncertainties in the decision-making process when warranted.

The procedures offered in Chapter Four find their genesis in the lessons learned from the case study of
the previous chapter.  This chapter discusses the lessons learned.  The next chapter combines the lessons learned
with experience gained by the risk analysis community over the years, to develop some generic risk analysis
procedures for ecosystem restoration projects. 

Although some of the lessons learned in the case study may represent new insights, most of them are
confirmations of common situations that arise.  If you are involved in  risk-based habitat evaluation work, be
prepared to address these concerns, because they are that common.  Be forewarned that you can expect problems
not addressed here to arise as well.  The lessons learned have been organized into three sections.  First, there are
lessons learned about how to prepare for a risk-based habitat evaluation analysis.  Second, there are lesson
learned about data collection.  Finally, there are the lessons learned while conducting the analysis.  

PREPARATION

Perhaps the number one lesson learned is that preparation is the most important phase of a risk-based
analysis.  If people do not understand what uncertainty is or that it must be addressed, all else is futile.  If the
reasons for addressing this uncertainty are not clear to analysts, there is going to be little enthusiasm for the
analysis and little hope that it will be done well.  Thus, we begin with the lessons that must be learned before
analysis begins.

REALIZE THAT UNCERTAINTY EXISTS

What are “with project” conditions going to be?  Will an increased stream flow lower temperatures?  
If so, by how much?  Could the flows affect DO as well?  By how much?  Will the flows have any impact on
stream velocities?  How much of an impact will these changes in water quality really have on the rainbow trout
or channel catfish?  You may have some ideas about the answers, maybe some pretty good ones.  But the truth
is, we don’t know for sure.  We’re uncertain.  Virtually all “with project” condition forecasts are uncertain.  The
same thing goes for “without project” forecasts.  Will DO levels stay the same or are there processes at work in
the reservoir that will result in more or less DO in the water released for hydropower in the years ahead?
Forecasts are by their nature uncertain.  Even getting good estimates of complex variables that are right in front
of you, when you have only a few minutes to estimate them, is impossible to do with certainty.  Uncertainty is
present in all steps and iterations of the planning process.  It is especially rampant in ecosystem restoration
planning.



Risk and Uncertainty Analysis Procedures 
for the Evaluation of Environmental Outputs

20

Getting people to acknowledge the existence of uncertainty is going to be one of the greatest obstacles
to incorporating risk analysis into ecosystem restoration.  Ecosystem restoration analysts are likely to be faced
with daunting tasks and constraints on their time, budgets, personnel and capabilities.  Although they are laboring
in the face of substantial uncertainties they often have neither the time, training nor inclination to consider that
uncertainty in anything more than the most cursory fashion, if they consider it at all.  Analysts who already feel
they have more to do than can possibly be done well with the available resources may not be well disposed toward
taking on the additional analytical and deliberative responsibilities that risk analysis represents to them.  

The first step must always be to get the study participants (planners, partners, and public) to realize that
uncertainty exists and it is natural, expected and unavoidable.  Next, they must understand that some uncertainties
might substantially affect the alternatives they formulate or the performance of the alternative they select in such
a way that the important decisions they are called on to make could change significantly.  For example, if DO is
0 mg/l you will definitely be steered toward alternatives that increase DO.  But if DO is really closer to 6 mg/l,
then low flow conditions might be more important and your choice of actions could be substantially different.

The first goal in any risk analysis must always be to get people to see that:  1) uncertainty exists and it
is unavoidable; and 2) some uncertainties could materially affect your decisions.  When the first goal is
accomplished, the second goal is to address the important uncertainty in your study.

UNDERSTAND UNCERTAINTY AND LEARN HOW TO THINK ABOUT IT

Once planners and others are aware of the existence of uncertainty in a general sense and the potential
significance of important uncertainties, the next step is to learn how to think about the nature of uncertainty.
Chapter Three of the March 1996 IWR Report 96-R-8 An Introduction to Risk and Uncertainty in the
Evaluation of Environmental Investments provides a good introduction to the basics of risk and uncertainty
analysis.  It is important to understand the kinds of things that can be uncertain (theory and knowledge, models,
and quantities) and the sources of that uncertainty (random error and statistical variation, systematic error and
subjective judgment, linguistic imprecision, variability, randomness and unpredictability, disagreement, and
approximation).  

This manual places a good bit of emphasis on the uncertainty that arises because of variability among
elements of a population.  This is a common source of uncertainty in ecosystem restoration projects.  But it must
be emphasized that this is not the only source of uncertainty that arises in these projects.  Nor will it always be
the most important source of uncertainty.  In order to design and conduct a good risk analysis, analysts need a
systematic way to approach their work.  The taxonomy of IWR Report 96-R-8, taken from Morgan and Henrion
(1990), offers such an approach.

PURPOSE OF RISK ANALYSIS

The purpose of risk analysis is to improve the quality of the decisions being made in ecosystem
restoration studies.  That happens when the analysis enables the planners to tell stakeholders and decision-makers
what is known, what is not known, and what is partially known about problems and their solutions.  Armed with
this heretofore missing dimension of the information they are working with, decision-makers will be better
informed.  Better informed decision-makers should make better decisions.

IDENTIFY THE MAJOR UNCERTAINTIES
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Truth be told, in an ecosystem restoration project virtually everything is uncertain to some degree.  The
purpose of risk analysis is not to cripple the study with the burdens of additional time, budget, or resource
requirements, just to be able to say a risk analysis was done.  The sole purpose of a risk-based analysis is to
improve the quality of decisions made.  Those decisions include the formulation of alternatives, evaluation and
assessment of their impacts, comparisons of alternatives, and the final recommendation of the study. 

If the costs are small, the problems are simple, and the consequences of being wrong are trivial, there
may be no need for anything more than a cursory and subjective risk analysis.  For example, one might say the
outputs of Plan A are more certain than the outputs of Plan B.  In other cases, a more detailed analysis is required.
In either case, it is important to focus the analysis on uncertainties that matter to the decision process.  An
example of important uncertainties are those that create important differences in the estimation of project effects
that could influence the formulation of alternatives or the choice from among them.

In the case study, DO was identified by many parties as the most important limiting factor in the
ecosystem.  A low DO level was identified as the reason a cold water fishery had not been successfully
established.  Although the actual DO level was not known with certainty, this variable was treated as a
deterministic value by the field team, even in the sensitivity analysis and simulation of the preceding chapter.  In
general, an analysis should not treat such an important variable as deterministic unless it in fact is deterministic.

On the other hand, there are habitat variables that simply are not important in a given situation because
they are not constraining the ecosystem.  An example would be the thalweg depth as discussed in the last chapter.
Depths in excess of 45 cm yield a suitability index of 1.  In the case study, this value was allowed to range from
61 to 122 cm.  Despite this relatively substantial range in thalweg depths, it had absolutely no impact on the HSI
estimation, estimates of project outputs, or the formulation process.  It was not a constraining variable and
although the average thalweg depth is indeed uncertain, it is not an important uncertainty.  It need not be
considered because it will have no effect on the study decision.  Ignore the uncertainties that are not important,
but be sure they are unimportant before you ignore them. 

Which habitat variables are important and which are not will vary from species-to-species and from
study-to-study.  In a related fashion, which uncertainties are important and which are not is going to vary from
situation-to-situation.  What will not vary is the importance of concentrating only on those uncertainties that are
important; i.e., the ones that have the potential to result in the formulation or selection of different alternatives.
Spend time before collecting data identifying and discussing the major uncertainties.  These discussions would
ideally involve all the stakeholders in the study process.
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CLARIFY YOUR LANGUAGE

Language can be a concealed, yet serious, source of uncertainty.  Read an HSI model and we all have a
pretty good idea of what the familiar terms mean.  I know a pool when I see one, I know what shade is, I
understand what a river bank is.  These terms are common, everyday English.  But when you get out in the field
with a group of people, it is amazing how divergent people’s views are on what constitutes a pool, shade, or a
bank.  It is impossible to generate a consensus estimate of the percentage of pools if we each think of a pool as
something different.  It is important to take the time to clarify what is meant by the words you use.  Pay particular
attention to the terminology used in models prepared by others.

When there are many points of view, it may be less important which will be used than that everyone have
a common and accurate understanding of what the terms used mean.  Clearly, when the terms are important
because of their use in a source document like an HSI model, the prevailing definition should be that of the
authors of the model whenever possible.  Consistency is important.  It is essential that everyone use the same
definition.  

PREPARATION IS IMPORTANT

Being prepared to do a risk analysis is an essential part of doing a good risk analysis.  That means
analysts must recognize not only the existence of uncertainty but also the value of dealing with major
uncertainties explicitly.  This takes a great deal of effort the first time or two risk analysis is used by a person or
study team.  It is during these times that people must learn the basics of risk and uncertainty analysis.  What is
it, why is it important, how can I deal with it?  Potential tools are discussed in Chapter Five. Unfortunately, the
answers to these questions require effort on the planner’s part.  Fortunately, once that effort is expended it need
not be expended again.  Instead it can be built upon.

DATA COLLECTION

Once you have prepared for a risk analysis it is important that data be collected in a fashion that will
support risk analysis.  Some lessons learned about data collection follow.

DEVELOP GROUND RULES FOR DATA COLLECTION

Ask a group of people a question that has a subjective answer and you are likely to get a bunch of
different answers.  The range of answers reflects the uncertainty inherent in the situation.  It can be very helpful
in addressing the uncertainty in a situation to develop a set of ground rules that will help identify the uncertainty
inherent in a situation.

Before data collection begins, the team should develop and agree to a set of ground rules that will dictate
how the data collection will proceed.  The purposes of the rules are to ensure everyone that their efforts will be
considered and to work out a procedure by which the work will be accomplished and model values determined.

The rules can vary from situation-to-situation.  They might be as simple as, “The U.S. Fish and Wildlife
Service personnel will do the analysis as they see fit.”  If an interdisciplinary or inter-agency team is used,
however, it may be helpful to develop and agree to rules that make sense for the situation.  A few generic
suggestions follow:
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1. Indicator species will be identified well in advance of the field work.

2. Everyone shall read the HSI model (or appropriate background material if other
techniques are used) prior to the field work.

3. The data team, working in a group session, will review each habitat variable to be
measured to ensure a common definition of all terminology prior to beginning data
collection.

4. In the event of differences of opinion on the meaning of any terms the judgment of
(provide your decision rule here) the majority/project manager/U.S. Fish and Wildlife
Service/chief environmentalist shall prevail.

5. All field measurements will be taken at least twice and by different people if possible.

6. Any variable that is measured subjectively will first be estimated silently and
independently by each team member.  Once all variables have been estimated, each will
be discussed in turn to clarify any differences of opinion and to develop consensus
values for the variables to be used in any models or analysis.

7. Preserve the variation in observed values recorded by the team members.  These can
form the basis for sensitivity analysis, the description of subjective probabilities, or the
specification of probability distributions used in your risk analysis.

More ground rules can be developed as necessary.  For example, it may be advisable to develop rules
for reaching the consensus referenced in item 6 above.  If the study calls for a more detailed data collection effort,
including a sampling design, then more detailed rules are going to be required.  Rules may need to be tailored to
the personnel doing the work.  Any rules that meet the needs of the study are acceptable.  Working out the rules
ahead of time, rather than developing them on an ad hoc basis, offers the advantages of prior thought and fairness.
Neither of these should be neglected.

WORK INDEPENDENTLY AT FIRST

One opinionated or authoritative person can dominate the position of a group.  If that one person is
unaware of, denies or underestimates the existence of uncertainty in a situation the analysis may not address
uncertainty as well as it might.  If the extent of the uncertainty is going to be fully explored, it’s going to take the
best efforts of everyone involved in the analysis.  Thus, it’s important to avoid having any one individual
dominate the field data team.  One way to do that is to have everyone work on their own at first.
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Data collection efforts are often team efforts.  The advantage of a team is that two heads are better than
one.  To reap the benefits of teamwork, you want to make sure you provide an opportunity for all team members
to contribute to the best of their abilities.  That means you want everyone to be involved and you want everyone’s
effort to be appropriately considered.  A common problem that arises in team efforts is the dominant individual.
A person may “dominate” a group by virtue of their expertise, size, age, argumentativeness, position of authority,
or by other means.  When people acquiesce to the opinion of another, either without having first thought through
their own opinions or without being truly convinced of the correctness of the other person’s opinion, we have
domination.  A group can be dominated by the active efforts of the “dominator” or by the passive efforts of the
“dominated.”  By allowing or requiring team members to initially work individually, you may be able to minimize
the dominant individual effect.  You’ll also be getting the most from your team’s efforts.

The case study field team assembled at the data collection site and began recording values for each
habitat variable.  After the first couple variables, the entire team settled into its modus operandi which was to
have a single dominant individual voice his opinion, only to have everyone else nod their heads in agreement and
record what he said.  DO, temperature, and pH measurements were taken separately by one team member.

Because the team only had time to stop at a single access point for each reach, most of them were
completely unfamiliar with the remainder of the river.  Because the team yielded to the opinion offered by the
dominant individual, the data collection effort was effectively done by one person, despite the presence of the
others.  This is a situation that should be avoided.

It is essential that the field team have a common understanding of all the variables they are trying to
measure.  This should be assured before data collection begins.  Everyone should be encoding the data on
identical data collection forms.  Everyone should make their own independent estimates of the habitat variable
values silently at first.  Once all variable values have been encoded for the reach, then the team members should
begin to compare their values.  Members can offer their reasons for the values they estimated.  You may want
to allow people an opportunity to modify their own estimates after everyone has offered his rationale.  Final
decisions about variable values need not, in fact they should not, be made in the field.

When dominant individuals might be present, it is best to address this situation in the ground rules
established before the work begins.  Some rules are offered below for example purposes only:  1) Everyone will
record each variable value independently and without discussion with anyone else; 2) Everyone will report the
values they recorded, before leaving the data collection site.  Everyone is encouraged to offer an explanation for
the values they chose; 3) There will be no direct response to anyone’s valuation of a variable.  4) After all results
have been reported, everyone will have an opportunity to make any changes to the values they want; 5) The
revised values will form the basis for the model values.  The lowest and highest values estimated by anyone will
become the minimum and maximum values.  The average of all most likely values will become the most likely
value.  As an alternative to this minimum/mean/maximum method, it is perfectly acceptable to make the values
of the local expert or anyone else the basis for model values.  In that case, other team members play an advisory
sort of role in the data collection.
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AVOID USING HEURISTICS TO ADDRESS UNCERTAINTY

The biases, imprecision, and overconfidence that usually accompany expert evaluations of things that
are fundamentally uncertain provide much of the impetus for uncertainty analysis.  If the commonly used point
estimates found in habitat evaluation techniques are likely to contain significant errors, then explicit consideration
of uncertainty is required to consider possible sources, magnitudes, and implications of these errors.
Characterizations of uncertainty are as subject to bias and error as any other scientific analysis.

In this section, some important findings from the literature on the psychology of judgment under
uncertainty are reviewed.  The hope is that once aware of the existence and potential impacts of these heuristics,5

or rules of thumb people often use to address uncertainty, the better you will be able to avoid them in your
analysis.  The goal is to try to avoid relying on the heuristics that follow.

Availability.  Experts tend to assign greater probability to events to which they are frequently exposed
in the news, media, scientific literature, on their jobs, or in discussion with friends and colleagues.  These events
are available, in the sense they are easy to imagine or recall.  Thus, an expert who has worked repeatedly with a
rare situation is likely to think that situation far more likely than it is, in part because of its familiarity to them.
Make it a point to consider whether availability might be influencing your estimate of a variable’s value(s).

Anchoring and Adjustment.  Experts’ estimates of uncertain values are influenced by an initial
reference value or anchor, from which they then make adjustments up or down.  For example, ask a person how
far it is from Denver to Little Rock and a number pops into their head.  Then they add some miles to it and
subtract some miles from it to get their interval estimate of the distance.  They select an anchor and then adjust
it up and down.

The problem with this kind of response is that the number that pops into an expert’s head may be based
on limited experience with a situation or maybe even speculation and incomplete information.  Furthermore, the
adjustments we make are rarely large enough to reflect the true uncertainty.  The result is that our estimates of
uncertainty are unduly weighted toward our initial estimate of a value.

In practice this means we might look at a river and estimate midday shade at 20 percent.  Then we might
figure it could be five percent more in either direction.  Our estimate is 15 to 25 percent.  The estimate is centered
around that first value and we perhaps do not appreciate that we could be off by much more than five percent.
Challenge your initial response. 

Representativeness.  Experts often judge an event by reference to other events that resemble it.  A team
stops at an access point and estimates a habitat variable value and figure it is representative of an entire river
reach.  The problem is that a small sample may carry little or no relevant information about the river reach.  Our
estimation of population values should not be based on a few values assumed to be typical.  Unusual things can
happen in small samples.
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When forced to use a small sample or a single access point, care must be taken to assure that it is truly
representative.  If expert opinion is the basis for this judgment of representativeness, bear in mind this is a
characteristic that is very difficult to consciously recognize.  Thus, at a minimum, it would be useful to explicitly
identify and discuss the key variables in your analysis and their conditions at locations that are not visited.  Probe
the judgment of representativeness.  Don’t be too quick to accept the judgment that the entire population or reach
is like the little piece of it which you are observing.

Belief in “Law of Small Numbers” and Disqualification.  Many scientists believe small samples
drawn from a population are more representative of the population than can be justified on the basis of statistical
sampling theory.  In these situations a little evidence, like a single DO reading from a river reach, can unduly
influence the analysis.  Experts also tend to “disqualify”, i.e, discount or ignore, information that contradicts their
opinions.  For example, a DO reading that is higher than expected might be explained away as some sort of
anomaly.  Think about how to appropriately weigh the information you have.

Overconfidence.  As a result of these and possibly other heuristics, experts tend to underestimate the
uncertainty inherent in a given situation.  They often overestimate the likelihood that they are correct, or,
conversely, they underestimate the possibility that they are wrong.  The more difficult and complex the analysis
the more likely the overconfidence.  It’s not a bad idea to remember experience shows many experts are over-
confident.

DEVELOP INTERVAL ESTIMATES FOR EVERYTHING

It takes very little effort to make or record an interval estimate for field data.  Get in the practice of using
them for everything you record.  Just because you record a variable as an interval estimate, you are not obligated
to use it; but it is far better to have it and not use it than to need it and not have it.  Remember, intervals almost
always increase the accuracy of your work.

Most interval estimates are based on expert opinion.  Be sure to record a minimum possible value, a
maximum possible value, and a most likely value for everything you record.  If every member of a team is doing
this it will be necessary to combine the results into a single value.   Be clear on what you mean by “most likely.”6

The mean is often used when the mode is intended.

Whenever possible, it is preferable to take a random sample of variable measurements and develop
standard statistical confidence intervals.  These can be described, as shown in Chapter Five, as a range of values
in which you are, say, 95 percent confident the true value lies, or by specifying the sample statistic estimate and
its standard error, if the sampling distribution of the statistic is normal.
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If you find that some team members are not using a range of values to estimate the more subjective
values required for your analysis, play the devil’s advocate and challenge the members’ point estimates.
Changing the way people think about things will take time.  Estimating habitat variables as an interval rather than
a point represents a change in the way many of us think about and do things.  It will take time and some prodding.
Challenge conventional thinking to help people see environmental phenomena in a new light.  If you are
measuring a variable with meters or other field equipment, take and record multiple measurements and use them
accordingly.

GET THE RAW DATA WHEN POSSIBLE

DO, temperature, pH and streamflow data used in the case study, though measured during the site visit,
were taken from prior reports and data collection efforts.  Whenever possible, it is desirable to obtain the original
or raw data so that you can develop confidence intervals suitable for use in your analysis.

UNDERSTAND THE MODELS FOR WHICH YOU ARE COLLECTING DATA

It is common sense that analysts should understand the models they use in an analysis.  In particular, the
analyst should understand the uncertainties inherent in the model and its use.  This is not to imply that
uncertainties in the models of others need to be corrected or addressed.  At a minimum, they should be identified
and decision-makers need to be made aware of the situation that exists.  The HEP analysis itself is a subjective
process that can, at times, be regarded as more scientific than it is because it involves calculations that are very
precise if not accurate.  

The expert knowledge of and experience with the HSI models used in the case study led to the prior
preparation of a common data collection form that proved to be very efficient.  This was a simple but good
example of how understanding the models improved the data collection.

GIVE KEY VARIABLES AFFECTED BY PROJECTS SPECIAL ATTENTION

The District analysis of the case study assumed that DO without the project was 0 mg/l and with the
project it would be 6 mg/l.  These were single point estimates of perhaps the most important variable in the entire
analysis.  If nothing is done, the average minimum DO would be 0.  This does not bode well for the rainbow trout
or anything else that requires oxygen for life.  Nor is it a certainty that this is true, especially because fish do
survive in these waters.  This meets the definition of a major uncertainty.  Likewise, the project is assumed to
guarantee an average minimum DO of 6 mg/l.  This precision is in spite of the relative novelty of labyrinth-
shaped weirs.

As Chapter Six will reveal, habitat as measured by habitat units is quite sensitive to DO values.  Suppose
there is more DO without a project than the analysts expect?  Suppose the project actually does less for DO than
expected?  If either or both these situations occur, it’s possible the weir is not a cost-effective way to address the
problem.  Are either of these situations conceivable?  Could they occur together?  The answer is yes to both
questions.  How likely is that to happen?  That is a question we cannot answer without some risk-based analysis,
as shown in a future chapter.  The lesson learned, however, is to make sure you explicitly address the uncertainty
in key variables that are going to be affected by a project.
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ANALYSIS

Preparing for risk analysis and collecting data to support it are important components of a good risk
analysis.  The analysis itself is clearly another important step.  Some lessons learned about the risk analysis
follow. 

DON’T DO MORE THAN YOU NEED TO DO

The purpose of risk-based analysis is to improve the quality of decisions.  If there is some risk  analysis
that would not improve the quality of the decisions you have to make, don’t do it.  Don’t do what can be done;
do what needs to be done.  Generally, this means concentrating on addressing the major uncertainties inherent
in your analysis.  In the case study, DO, temperature and stream velocity were major uncertainties.  They should
be addressed in the analysis.

On the other hand, there are some habitat variables, the uncertainty of which does not matter in the least.
Ignore the insignificant uncertainties, i.e., those that would have no bearing on the decision process.  The thalweg
depth discussion of this and the preceding chapter is an example of  an insignificant uncertainty that can be safely
ignored.

SOME SENSITIVITY ANALYSIS IS ALWAYS POSSIBLE

Every ecosystem restoration study requires some calculations or estimation, no matter what analytical
framework it uses.  If you can calculate/estimate something once, you can do it twice.  So, it is always possible
to do some sensitivity analysis.  Sensitivity analysis, addressed briefly in Chapter Two, is described in more detail
in Chapter Five.  The objective of a sensitivity analysis is to identify any factor to which your decision/course of
action may be sensitive.

In the case study, it would be interesting to know if the course of action would change if DO levels
without or with a plan were varied.  Suppose the weir does not result in a DO of 6 mg/l.  Would the project be
undertaken if the DO improved to 4 mg/l?  How many habitat units would result?  If a lower DO was realized,
fewer habitat units would result and the cost per habitat unit would rise.  Would it rise enough to dampen interest
in the project?  Every study should at least offer some sensitivity analysis that helps to inform the decision-
making process.

In addition, the scenarios used in a sensitivity analysis should be meaningful.  For example,  most likely,
worst, and best case scenarios would seem to be three meaningful scenarios to consider in a sensitivity analysis.
Poorly defined scenarios should be avoided.  Each scenario should serve a purpose in the decision process.  If it
is not clear what a specific scenario adds to the decision process, eliminate it.

MONTE CARLO SIMULATIONS ARE OFTEN POSSIBLE

If data have been estimated by intervals, it is possible to represent the uncertainty attending a variable
with a distribution.  If a value for a variable can be represented by a distribution, a Monte Carlo process
(described in Chapter Five) can often be used to simulate the range of potential outcomes in a situation.
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For the case study, the HSI models used were reproduced in a spreadsheet environment.  The single
values of key habitat variables were replaced with distributions and the HSI calculation was repeated thousands
of times for different scenarios.  You can think of a simulation as thousands of repetitions of various sensitivity
scenarios.  One major difference is that the selection of variable values is controlled by the Monte Carlo process
rather than by the analyst.  Values are randomly selected from distributions the analyst defines, but the analyst
does not usually select all the values for the calculation the way she would in a sensitivity analysis. 

A second major difference is that a Monte Carlo process can generate many thousands of calculations.
A distribution of outcomes, e.g., the change in habitat units, can be generated rather than one value as is done in
a deterministic analysis or a few values as is done in a sensitivity analysis.  For example, tens of thousands of
possible changes in habitat units can be investigated for a plan using Monte Carlo simulations.  The results can
provide decision-makers with a good estimate of the potential range of outcomes as well as the likelihood of those
outcomes.  

It takes little more than an interval estimate of key variables to gather the data for a crude Monte Carlo
simulation.  If your model can be built in a spreadsheet, commercially available software makes Monte Carlo
simulation quite feasible.  Other environmental models might require more sophisticated programming skills, but
Monte Carlo processes can be reproduced in a wide range of environmental models.

INTERFACING WITH OTHER REQUIREMENTS

The value of risk-based analysis is that it provides a more realistic picture of the potential outcomes of
a course of action.  Depending on the nature and extent of the risk analysis the picture is more or less complete.
For many people, the major problem with a risk-based analysis is that it produces an array of possible outcomes,
rather than a single deterministic value.  That makes it more difficult for decision-makers who are comfortable
with precision and the illusion of accuracy to process the information.  As a result, it is critically important that
the risk analyst keep in mind how the information they are generating will be used.

A distribution of the change in habitat units, such as will be presented in Chapter Six, may be sufficient
information in and of itself.  Although the entire distribution was not presented in Chapter Two, the example
indicates there is likely to be little variation in the project’s outputs, regardless of the alternative, based on the
uncertainties investigated in that simple analysis because there is little difference between the minimum and
maximum values estimated.  That analysis may provide the analyst, as decision-maker, with enough information
to simply proceed with the expected value of the change in habitat units for the remainder of the analysis.  Thus,
the incremental cost or average cost, as the case may be, of the alternative plan’s outputs can be based on a single
number even after a risk analysis.

In other circumstances the range in project outputs, like habitat units, may be substantial.  In addition,
the outputs of that analysis may be inputs to other analyses.  For example, the ECO-EASY Software developed
by IWR requires costs and outputs for each management measure under consideration.  In the current version of
this software, using the results of the uncertainty analysis would require multiple runs of the ECO-EASY
program.  This would amount to using the results of a risk-based analysis of habitat units to define a sensitivity
analysis of cost effectiveness and incremental costs.  Interfaces like these need to be considered before entering
into an analysis.  A sophisticated risk-based analysis at some intermediate point in the study process could be a
mistake if subsequent steps in the analytical process cannot make use of the information obtained in earlier steps.
In other words, it would be a complete waste of time to do a risk-based analysis such as was done in Chapter Two
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and as will be redone in Chapter Five, if you are only going to use the expected value for the change in habitat
units and ignore all the other information in the economic analysis of the project.

SUMMARY AND LOOK FORWARD

In the field test there was not enough time to prepare everyone for a risk-based analysis of the outputs
of the case study.  As a result, it was possible to observe many, but certainly not all, of the problems that can arise
in an environmental risk analysis.  Many lessons were learned from this case study experience.  They can be most
conveniently grouped into preparation, data collection and the analysis phases of the risk analysis.

In the next chapter, we present a strategic approach and a set of principles learned from this experience
in the form of eight procedural steps that can guide the risk-based analysis of ecosystem restoration project
outputs.  The procedures are flexible enough to fit many situations.  They are broad enough to be adaptable, while
remaining specific enough to provide a general structure for new risk analysts to follow in a risk analysis.
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Eight Steps to Risk Analysis

1. Select Analytical Framework for Environmental
Outputs
a. Review and select models/techniques for

evaluating project outputs
b. Understand the models you use
c. Make an informed choice of tools

2. Identify Types and Sources of Uncertainty
a. Know the types of uncertainty
b. Know the sources of uncertainty

3. Identify Potential Key Variables
a. Determine potential importance

4. Design Risk Analysis
a. Assess importance of analysis
b. Review tools available
c. Select tools

5. Collect Data
a. Consider data needs of risk analysis
b. Define your terminology
c. Design a data collection methodology
d. Use interval estimates
e. Use distributions

6. Identify Major Uncertainties
a. Review the potential key variables and

identify actual key variables
b. Describe key uncertainties
c. Pay attention to key sources of uncertainty

7. Do Risk-Based Analysis
a. Do the analysis
b. Verify your analysis
c. Meet or exceed minimum expectations of

risk analysis
d. Document your analysis

8. Communicate Results of Risk Analysis
a. Identify report’s audience
b. Tell the risk analysis story
c. Meet or exceed minimum reporting

requirements
d. Serve the risk management function

CHAPTER FOUR:  PROCEDURES

INTRODUCTION

The objective of this chapter is to present a
standardized process, or set of procedures, for
approaching the estimation of the risk associated with
estimating the change in habitat units or similar
environmental outputs that result from the simpler
and more routine ecosystem restoration projects.
Although procedures can be standardized, it is
impossible, in fact, undesirable to standardize the
specific tasks required to follow the procedures.
Thus, these procedures are more a strategic approach
and a set of principles than a cookbook recipe for risk
analysis.  Some suggestions for implementing these
procedures are offered but the reader should feel free
to modify and adapt them as necessary.

The procedures are grouped into three broad
phases of a risk-based analysis that follow the
lessons learned in the last chapter.  The first four
steps are part of the preparation for doing a risk-
based analysis.  The next two steps should be
followed while collecting data.  The last two steps are
required for completing the analysis and
communicating the results of the risk-based analysis
to others. 

STEP 1:  SELECT ANALYTICAL
FRAMEWORK FOR ENVIRONMENTAL

OUTPUTS

The analytical framework is assumed to
comprise the tools, techniques, and models used to
estimate environmental outputs.  For the specific
examples in this manual the analytical framework has
been HEP analysis.  There are many other
possibilities, each with its strengths and weaknesses.
The risk analysis procedures presented in this chapter
are flexible and adaptable enough that they may be
applied to any analytical framework.  Give special
attention to the input requirements of the various
frameworks, because that is where your risk analysis

is mostly likely going to focus.  Below are some tasks that will aid you in this step.
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REVIEW AND SELECT MODELS/TECHNIQUES FOR EVALUATING PROJECT OUTPUTS 

Ecosystem restoration projects may produce a variety of outputs.  IWR Report 96-R-4 Linkages Between
Environmental Outputs and Human Services says:

Ecological outputs include many different physical, chemical, and biological manifestations of
ecosystem processes; most prominently, the abundance and renewal rates of desired species,
sequestering and export of various water transported materials, and biological integrity of
ecosystems.   Targeting the most appropriate outcome categories and the most desirable output
levels for decision criteria is a prerequisite for the most effective management. (p.5)

In the past, environmental analyses have targeted specific characteristics of an ecosystem or groups of
characteristics that might include suspended sediment, salinity, DO, temperature, food, endangered species,
waterfowl, sport fish and the like.  The analysis still often relies on indices that link habitat conditions to these
kinds of measurable characteristics through model estimates of habitat suitability or more generic indicators of
habitat quality.  Despite the recent policy preference for models that are more representative of diverse and
sophisticated ecosystem functions and their sustainability, many studies rely on the more narrowly-focused
evaluation models and techniques such as HEP analysis for a suite of indicator species.

It is recommended that analysts regularly review the techniques and models that are available to them
to quantify project outputs.  IWR Report 96-EL-4 Planning and Evaluating Restoration of Aquatic Habitats
from an Ecological Perspective, forthcoming, provides a good summary of the models in recent use.  Networking
with other ecosystem restoration planners is another important source of information about innovative approaches
to output estimation.  Some Districts have begun to use more complex models that combine a number of the more
narrowly focused models.  Others are developing unique community and ecosystem models.  The Districts are
the experimental laboratories for this genre of models and techniques.

HSI model-based HEP analysis remains one of the most common and popular techniques for estimating
environmental project outputs.  It is a relatively simple and cost-effective tool.  It can be used alone for simple
projects or combined with other tools for more complex projects.  For these reasons, this manual has focused on
the HEP analysis example.  Nonetheless, this is not a HEP analysis manual and these procedures are applicable
to many other tools and analytical frameworks.  So, even though HEP may be a familiar and serviceable analytical
framework, the range of available tools and methods should be regularly reviewed.  Keep up with advancements
and developments in your field.  Select an analytical framework because of the needs of your client, the demands
of your analysis, the tools available, and the constraints of your study.

UNDERSTAND THE MODELS YOU USE

No matter which technique or model you use in your analysis, make sure you understand what it does,
how it does it, and how to use it.  There is no effective way to identify and address the uncertainties present in
your analysis if these questions can’t be clearly answered.  Under the pressures of deadlines and budgets there
can be a tendency to want to grab a recent report and replicate certain data, analysis or results.  Models can be
used as black boxes into which we put some numbers and out of which we get different numbers, when there is
no time to really learn the models.  A cardinal rule of any analyst should be to never use a tool or technique that
you do not understand well enough to explain its workings to a group of laypeople.
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You need not be able to write the programming code for a complex model.  You need not have read all
the source literature to use an HSI model.  But you have to understand the models you use or the potential for
misuse is too great.  Misuse of a model can introduce very serious sources of uncertainty that, in principle, are
preventable.  Know your model and you’ll be better prepared to consider the ways uncertainty enters your
analysis.

MAKE AN INFORMED CHOICE OF TOOLS

The presumed starting point for any introduction of risk-based analysis to the estimation of ecosystem
restoration project outputs is an informed choice of the analytical framework that will be used for the task.  This
includes a review of the available techniques and models and an adequate understanding of the framework
selected.  This choice should be properly coordinated with the appropriate interests.

STEP 2:  IDENTIFY TYPES AND SOURCES OF UNCERTAINTY

Once an analytical framework has been selected, the next step is a generic identification of the types of
uncertainty that can accompany it.  Next, the sources of these uncertainties should be identified.  Once you’ve
accomplished this step for a specific analytical framework it need not be repeated.  That is, if you sit down and
carefully examine the structure and potential uncertainty in the HSI model for the rainbow trout, the knowledge
you gain is relevant any time you use that model in any future study.

KNOW THE TYPES OF UNCERTAINTY

Uncertainty can be aleatory or epistemic.  It can be knowledge uncertainty, model uncertainty, or quantity
uncertainty.  These are topics that have been treated in detail in other works.  Anyone who is going to be involved
with risk-based analysis needs to develop a mastery of some serviceable taxonomy of terms that will help them
to think and talk about the various types and sources of uncertainty.  Then it is important to spend a little time
honestly scrutinizing the framework you intend to use.

HEP analysis is a habitat-based impact assessment methodology that relies heavily on the notion of an
ecosystem’s carrying capacity.  The linkages between habitat quality and the numbers and types of plant and
animal species the habitat can support are poorly understood due to what we simply do not yet know about
ecosystem function, i.e., epistemic uncertainty.  The models used in HEP analysis, the U.S. Fish and Wildlife
Service HSI models, are themselves sources of uncertainty.  Do they have the right habitat variables in them?
Are the relationships in the suitability index graphs accurate?  Are there other ways the life requisites and HSI
could be calculated?  These are all sources of model uncertainty.
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Generally, knowledge and model uncertainty will be beyond your ability to address in any one study.
Certainly, smaller-scaled Section 1135 studies cannot broach these subjects.  As environmental understanding
grows, however, some of these uncertainties can be eliminated.  HSI models are frequently modified and adapted
when analysts find they do not fit what is known about a specific project area.  Over time, these uncertainties can
be addressed.  New and better models will become available.  There may be occasional environmental studies that
are so important that some of these knowledge and model uncertainties must be resolved.  When these occasions
arise, they will likely involve the scientific community and the responsibility will not rest solely on the shoulders
of the Corps’ study team.

Quantity uncertainty is likely to be the most common source of uncertainty.  Much of the uncertainty
planners will address stems from quantity uncertainty.  It is essential to recognize the various types of quantities
encountered in a study because they include certain clues about the sources of the uncertainty that attend these
quantities.  Empirical quantities, the measurable properties of the real-world environmental systems we model,
are the most commonly encountered sources of quantity uncertainty.  They are far from the only types of
quantities that are uncertain.  Morgan and Henrion (1990) describe defined constants, decision variables, value
parameters, index variables, model domain parameters, state variables, and outcome criteria as other quantities
that might be uncertain. 

Once you have selected an analytical framework and develop a basic taxonomy of uncertainty, it should
be a simple matter to identify, in general terms, the types of things that are uncertain in your framework.  For
example, in a HEP analysis we know there is knowledge and model uncertainty that we can do little about.  But
we also know there are quantities that will be uncertain.  The habitat variables are empirical quantities that are
uncertain.  The size of the affected area is an uncertain model domain quantity.  The life requisite values as well
as  the HSI and habitat unit estimates are uncertain outcome criteria.  “With project” condition effects on certain
variables are uncertain decision variables.  And so it goes.

The result of this procedural step is that analysts have thought about the uncertainties inherent in their
analysis.  As a result, they have a good idea of the things that are uncertain.  Armed with this insight they will
be able to do a better job of addressing those uncertainties that are important to the decision process later in the
analysis.

KNOW THE SOURCES OF UNCERTAINTY

Once you have identified the types of things that could be uncertain within your analytical framework,
it is important to think about the causes of that uncertainty.  Morgan and Henrion (1990) identify statistical
variation, subjective judgment, linguistic imprecision, variability, inherent randomness, disagreement and
approximation as the primary sources of quantity uncertainty.  Models and knowledge are generally uncertain
for epistemic reasons.  The emphasis here is on quantity uncertainty because it is the most common source of
uncertainty, if not always the most serious source of uncertainty.

Empirical quantities, like habitat variables, can be uncertain for a variety of reasons.  First, our
measurements of them may not be absolutely exact.  Our instruments or our observation techniques may be
imperfect.  Frequently, habitat variable measurements are based on subjective judgments wherein experts often
rely on heuristics (see Chapter Three) that distort their judgments.  The terms used to describe and define the
habitat variables may be misinterpreted.  Different people may understand a riffle to mean different things.
Conditions vary over the project area.  Taking a measurement at one site (sample) is not likely to yield a
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measurement representative of the entire study area (population).  Some habitat variables are uncertain because
they are fundamentally random.  Do we have a model or pattern that can account for the randomness in pH in a
stream?  If not, we call this inherent randomness.  When habitat variables are measured by a project team there
may be disagreements over what the true value of the population parameter is.  Approximation is another source
of uncertainty in habitat variables. 

Identifying the source(s) of uncertainty is an important step.  The source of the uncertainty helps you
determine the best way to resolve or address it.  If you expect that linguistic imprecision and disagreement are
likely to be the major sources of uncertainty in your analysis, you can address that through education, discussion
and issue resolution techniques. If the problem is likely to be variability, you use statistical techniques.  For other
sources you might use sensitivity analysis or  Monte Carlo processes. 

Once you have gone through this process for any aspect of the analytical framework, for example an HSI
model for the rainbow trout, you can use the results time and again as a starting point for other analyses that
utilize the same model.  This is an important procedural step that becomes easier the more it is practiced.

STEP 3:  IDENTIFY POTENTIAL KEY VARIABLES

This step is a specific refinement of the last step.  Once you have identified generic types and sources
of uncertainty within your chosen analytical framework it is time to begin to get more specific.  For example,
suppose you suspect that statistical variation of  habitat variables is likely to be a major source of uncertainty in
your analysis.  The next question is, “Which habitat variables are likely to be the origins of the uncertainties most
likely to affect your decision process?”  Would any variable(s) be potentially capable of affecting the choice of
actions to take?  If so, they need to be identified now so special care can be taken in collecting information about
that variable.

We limit the discussion to “potential importance” at this point.  Presumably the analysis has not begun
and no data have been collected.  A variable that is potentially important in theory may not be important in fact.
That cannot be known until data have been collected.  To illustrate this point, consider an extreme example.  We
can all agree that oxygen is a potentially important variable for the mottled duck.  If it is not there it could result
in an HSI of zero.  Oxygen is not important to the risk analysis because it is so abundant.  It is in no way a
constraint on the habitat or its carrying capacity.  The truly important uncertainties cannot be identified until a
later step in the procedures.  For now, we content ourselves with identifying things that might be important and
we rely on the analytical framework we’ve chosen to identify candidate variables.

DETERMINE POTENTIAL IMPORTANCE OF VARIABLES

This task brings the previous procedural tasks together.  Once the types and sources of uncertainty have
been identified, it is important to return to your understanding of how your model works.  It is only through a
thorough understanding and careful examination of your model that you can identify the potentially important
variables.  Designating a variable as important requires criteria.  We suggest three criteria for determining if a
variable is potentially important.  These are discussed in turn below.  In Chapter Five we offer a criteria-based
ranking of key habitat variables that can be adapted for use in this step of the analysis.

What Do People Say is Important?
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The way to start to find out what variables are important is to find out what people think is important.
Ask your non-Federal partner.  Ask the resource agency personnel.  Ask your study team members.  Ask the
public.  Read the professional literature.  Review any and all related reports.  If you do these things and something
comes up over and over, chances are good it’s important.  When a lot of people think something is important, it
usually is.  Once you’ve identified something important make sure it’s on your list of potential key variables.

Look at the Structure of the Model(s)

The structure of a model reflects the extent to which a physical system or phenomenon is understood.
This step punctuates the importance of understanding your model.  Models are simplifications of complex
realities.  As such, they rely on assumptions, judgments, constraints, estimation and solution algorithms and so
on.  Is there any aspect of the model that has more influence on the model results than any other?  That is almost
invariably true.  Such aspects may be potentially important uncertainties.

Chapter Two provided examples of some suitability index graphs and a sample model component
equation for the rainbow trout HSI model.  These were examples of the model structure.  Chapter Six provides
a more detailed example of how this step might be accomplished in a HEP analysis.  For now, suffice it to say
that given the suitability index graphs and the role of the various suitability indices in the unique mathematics
of an HSI calculation, there are usually some variables that are more important than others in the determination
of the HSI and subsequently, habitat units.

Which Variables Can You Affect?

Another way to determine a potentially major uncertainty is to look at which environmental factors you
can control or influence.  For example, if you’re considering changing gate operating procedures on a water
control structure you will be unable to affect the amount of midday shade in the project area.  But you may be able
to affect temperature by increasing or decreasing flows at certain times of day.  It is generally wise to pay extra
attention to those things you can control, or at least affect.

Determine Potential Importance

Here, we offer three criteria.  If any variable in your analysis is identified by all three criteria, it is
important.  A variable identified by two criteria may be more important than a variable identified by only one
criteria.  Chapter Six presents a simple methodology that builds on this useful thought process.

Any variable over which you have some potential control should probably be included among your
potential key variables.  Variables identified by one of the other criteria deserve your scrutiny as well.  Bear in
mind, however, these criteria are to help you think about your situation, they are not hard and fast rules.  Planners
are encouraged to develop their own criteria and rankings of variables.
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In the case of a HEP analysis, habitat variables that can mathematically  lead to an HSI of zero are7

potentially important.  If we do not or cannot do anything about them, there is no chance that we can improve the
habitat.  These would be natural candidates for inclusion among the list of potentially key variables.

One final note.  When we talk about key variables, we could just as well talk about key parameters or
equations that are “hard-wired” into a model.  Potentially key uncertainties need not literally be variables.  It is
simply the nature of most ecosystem analytical techniques that variables will arise as key uncertainties more often
than any other factor.

STEP 4:  DESIGN RISK ANALYSIS

How will you do your risk-based analysis?  There are a host of tools, techniques and methods available,
but you must pick those best-suited to the needs of your analysis.  This is the step in which you do that.  Once
again, this step is dependent upon the extent to which you have succeeded with the earlier steps. 

ASSESS IMPORTANCE OF ANALYSIS

The best place to begin this step is to ask, “How important is the risk analysis?”  We’re working from
the assumption that the risk analysis is an integral part of the ecosystem restoration project.  Hydrology is a factor
in every study and it is always addressed.  Because uncertainty is always a factor in any study it too must always
be addressed.  But it will be more important in some studies than in others.

Studies that are complex, difficult, controversial, expensive, high profile or otherwise sensitive may
require more analysis and scrutiny than a small, routine study.  You do more hydrology in some studies than
others.  The same is true of risk analysis.  The bottom-line is, risk analysis should be decision-driven.  Risk
analysis should never be done simply to check a risk analysis requirement off a “things to do” list.  Risk analysis
informs the decision and the decision-makers.  If the decision is routine, noncontroversial, and simple, little
analysis will be required.  If the study is controversial and there is a great range of project results, a more detailed
analysis may be warranted.  Most studies will fall somewhere between these two extremes.

The more important the decision, the more important the risk analysis.  The first task here is always to
determine how important the risk analysis is.  To do that, determine how important the study actions are to
stakeholders. 

REVIEW TOOLS AVAILABLE

If you have a very complex and controversial decision to make, you’re going to have to review more risk
analysis tools than if you were doing a simple study.  As is true with ecosystem evaluation models, the tools and
models available for risk analysis are proliferating.  A working familiarity with the tools that can help you do your
job is the starting point for this step.  Some tools most likely to be useful in ecosystem restoration are discussed
in the next chapter.
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SELECT TOOLS

Considering the importance of your analysis, the types and sources of your potentially important
uncertainties, and the tools available, select the tools to be used in your risk analysis.  To do that, you have to be
aware of the knowledge, expertise, software, hardware, time, and money constraints you face.

Completing the earlier steps in the procedure is crucial to the success of this step.  The analysis you do
will be largely determined by the nature of the potentially important uncertainties you are trying to address.  As
mentioned earlier, uncertainties due to disagreement and imprecise language are addressed by different tools than
would be used for uncertainties due to inherent randomness, for example.  Thus, the steps for selecting your risk
analysis tools or for designing a risk analysis can be summarized as follows:

1. Know what key variables are potential major sources of uncertainty.

2. Know the primary source(s) of that uncertainty.

3. Review the risk analysis tools and methods appropriate for dealing with those sources
of uncertainty.  

4. Select the risk analysis tools and the methods of analysis appropriate for your sources
of uncertainty bearing in mind the following:  a) the importance of the study; b) the
importance of the risk analysis within that study; c) study constraints: time, money,
knowledge, expertise, software, and hardware; and, d) the available tools and methods.

In an HEP analysis, as Chapter Two has shown and Chapter Five will show in more detail , sensitivity
analysis and a Monte Carlo simulation are reasonable analytical tools to use.  Risk analysis design must include
a data collection strategy. Data collection may require sample designs or education of field personnel.
Development of data collection protocols that resolve or address professional disagreements may also be required
for the analysis.  All of these tasks and tools are part of the risk analysis design.  In some cases, where complex
“hard-wired” models are used, it may be necessary to rely on simple scenarios generated by multiple runs of a
model.  In other cases, it may suffice to consider how much habitat units would have to be reduced before a plan
is no longer desirable.  The extent of the risk analysis design is entirely study specific.

STEP 5:  COLLECT DATA

Risk analysis should be an integral part of the environmental investigation, not an add-on or an
afterthought.  It’s as important as hydrology or economics.  A good risk analysis can impose certain data
requirements that might not exist in the absence of a risk analysis.  It’s important to complete the design of the
risk analysis prior to data collection, so you know what kinds of data you need. 
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CONSIDER DATA NEEDS OF RISK ANALYSIS

Once the risk analysis has been designed you’ll know what kind of data you need to do the analysis.   If
you’ve decided to do a Monte Carlo simulation as part of your risk analysis, you know you’ll have to be able to
express the potential key variables as distributions rather than as point estimates.  That means you’ll need enough
data to specify the parameters of your distribution or enough data to which you can fit a distribution.  That’s quite
different from a single point estimate data collection effort.  It’s also something you have to know before data
collection begins.  

There is always a trade-off between the costs of data collection and the amount of information available
to make decisions.  As with any good analysis, the goal is to get all the data you’ll need and to use all the data
you get.  Sometimes that means a detailed probability sample design.  Other times that only requires observation
at a single access point.  We want to emphasize the fact that you do not collect extra or special data for a risk
analysis.  Risk analysis may dictate that you collect the data you need for your analysis in a slightly different way,
but it does not entail additional data requirements in a strict sense.

DEFINE YOUR TERMINOLOGY

You know what you mean when you say something.  You know what it means when you hear something.
But what you say and what someone else hears may bear little resemblance to one another.  Worse, neither of you
may be aware of the misunderstanding.

During the research for this document, people have understood common terms like pools, shade, river
bank, cover,  -1 foot, and other terms without ambiguity.  But they’ve also understood them to mean different
things than their colleagues have understood them to mean.  If you want to address the uncertainty inherent in
your analysis, make sure your data collection effort is preceded by a team discussion of the variables, terms,
concepts, theories or other jargon that is involved in your data collection effort.  The ideal is to have accurately
defined and commonly understood meanings of all jargon.  At a minimum, consistent definitions should be used.

DESIGN A DATA COLLECTION METHODOLOGY

If data are being collected by a team, especially if this involves subjective estimates of values, plan on
disagreement among the team members.  Your data collection efforts should provide for the independent
estimation of subjective data and the verification of more objective data.  It should also provide for resolution of
disagreements, reaching consensus, or combining the resulting values.  Decision theory literature offers a variety
of means of doing this. Simple techniques include averaging and estimating models using the individual
estimator’s results.  

USE INTERVAL ESTIMATES

Any data collection effort should always include an interval estimate unless the data are deterministic.
If data are uncertain, the simplest way to reflect that is to prepare an interval estimate.  There are essentially two
kinds of interval estimates:  subjective and objective.
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Subjective Interval Estimates

If you are observing some condition, “eyeballing” a variable value, offering an expert opinion, or
obtaining a subjective estimate of a variable value by any other means, you should, at a minimum, always record
that estimate as an interval value, even if you cannot foresee any possible use for the interval.  Do it anyway.  It
doesn’t take any additional effort.

An interval consists of a minimum and maximum value.  Define them any way that makes sense to you.
They can be absolute minimums and maximums or they can be defined to represent some degree of certainty the
expert has in his estimate, e.g, the 5  and 95  percentiles. A maximum and minimum can support sensitivityth  th

analysis and they can define a uniform distribution.

In most cases, you’ll want to estimate a most likely value.  That is usually the mode, but it could be the
mean. Include that with your interval and you can do a more focused sensitivity analysis or you can define a
triangular distribution (mode).  The interval need not be symmetrical about the most likely value.  When it is, the
three values can be used to approximate a normal distribution, if the most likely value is the mean (mean).
Estimating the minimum, most likely, and maximum values for any subjective estimate of a variable value should
be regarded as the minimum expected standard for estimation in a risk-based analysis.

Objective Interval Estimates

Statistical confidence intervals can be calculated for estimating some population parameters when a
probability sample of the population has been obtained.  The rules for defining these interval estimates are found
in standard statistical texts.  Two examples are offered in Chapter Five.  These intervals will generally require
more data collection effort than subjective estimates do.

Hybrid Interval Estimates

Sometimes you might have a reasonably good point estimate of a population parameter but you’ll lack
the information or data required to construct a statistical confidence interval.  Nonetheless, an interval estimate
may be helpful. In this case, use the objective estimate as your most likely value and make subjective estimates
of the minimum and maximum values.  Instances may arise when you have a good estimate of the minimum and
maximum but none of the most likely value.  These are hybrid cases that are neither purely subjective nor purely
objective. 

USE DISTRIBUTIONS

If your risk analysis requires probability distributions, as a Monte Carlo process would, your data
collection efforts will have to be carefully planned to collect that information.  Probabilities that can be
analytically estimated require no more than the theoretical knowledge required to do the analysis.  Frequency
estimates of probability require more data  if you want to try to estimate the population distribution from raw
data.  Alternatively, sample data can be used to estimate the probability distribution’s parameters.  Sometimes
experiments or simulations can be used to generate a data set to which a distribution can be fit.  Subjective
probability distributions (see Chapter Five) can be estimated in a number of ways.  Expert opinion estimates of
distribution parameters can be used.  Subjective probability elicitation is a technique that can be used to develop
cumulative distribution functions.
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STEP 6:  IDENTIFY MAJOR UNCERTAINTIES

Think of this step as a refinement of step three.  Once you have collected data you can determine which
of the potential key variables may actually be the source of major uncertainties in your study.  The difference
between this step and step three is that you narrow the list of potentially important variables to a set of actually
important variables in this step.  These are the variables that deserve your closest attention in the risk analysis.

REVIEW THE POTENTIALLY KEY VARIABLES AND IDENTIFY ACTUAL KEY VARIABLES

Look at each of the potentially key variables identified earlier in your analysis.  Using the data you have
collected, determine if that potential has been realized in this project.  A key variable will usually have a critical
range of values over which it becomes a constraint on the ecosystem.  For example, Figure 6 indicates DO levels
below 5.5 mg/l and above 9 mg/l are totally unsuitable for the rainbow trout. Values in these ranges make DO
a constraint on the HSI and a constraint on the effectiveness of any alternatives that do not address DO if without
project conditions fall within this range.  A variable with that kind of potential is a variable whose uncertainty
should be investigated, if not eliminated. 

Suppose data collection, using some sort of interval estimate, reveals the DO is somewhere between 6
and 7.  In that range, DO is a factor but it is no longer a constraint because these DO values yield suitability index
values that are above average, i.e., above 0.5.  Thus, the potential for DO to become an important source of
uncertainty is not realized.  There may be some uncertainty, as reflected in the DO range from 6 to 7, but it no
longer has the potential for major impacts on the study’s recommendations or conclusions.  It is not a major
source of uncertainty.  By similar reasoning, some variables will emerge as potentially important sources of
uncertainty while others will be eliminated.

DESCRIBE KEY UNCERTAINTIES

This task requires pulling the results of previous tasks together.  The actual key uncertainties need to be
explicitly identified.  The nature of their uncertainty should be explained as clearly as possible.  This includes the
type and source of the uncertainty.  The uncertainty should be described as explicitly as possible in mathematical
or verbal terms, thus the interval range, the distribution, and so on, should be provided.  Identify what is known
and what is not known about this variable.  Any inadequacies in the data should be identified, not covered up.
 Make your analysis transparent, i.e., tell people what you did and why you did it.  If the inadequacies can be
corrected by more or better data and/or analysis, say how this might be done and describe the effort required to
do it.  This gives decision-makers the option of seeking better information if they find it worth the investment of
more resources.  If any assumptions have been used to reach these judgments, identify them.  The point is, if there
is a variable that could have a significant impact on the study results and if it is subject to some degree of
uncertainty, decision-makers and stakeholders have a right to understand the nature of that uncertainty. 
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PAY ATTENTION TO KEY SOURCES OF UNCERTAINTY

The only reason to go through this step is to pay attention to key uncertainties.  Let other team members
know what is critical to the risk analysis so they can pay particular attention to these factors.  The primary
purpose of all the tasks to this point is to determine what is important.  Associated with the determination of what
is important is the presumption that you have determined what is less important or what is not important.  

The strategy now is to use resources on things that are important.  Concentrate your analysis on the
things that matter to your decision.  In some cases, it will not be possible to a priori identify the key variables
prior to the analysis.  Not all models and situations can be as easily understood as a HEP analysis.  In other
situations, it may be necessary to do the analysis before the major uncertainties can be identified.  For example,
a common purpose of sensitivity analysis is to specifically identify key variables.

STEP 7:  DO RISK-BASED ANALYSIS

In this step you do the sensitivity analysis, run the simulations, do the analysis -- whatever it may be --
and obtain the results.  Doing the preceding steps will help to assure you get the right science.  This is the step
in which you get the science right.

DO THE ANALYSIS

In this task, you simply execute the risk analysis you designed using the data you have collected while
paying particular attention to the key sources of uncertainty in your analysis.  Examples are provided in Chapters
Five and Six.

VERIFY YOUR ANALYSIS

Risk analysis can be complex.  Sometimes it is simple but tedious.  In either case,  the potential for error
is high.  Human nature being what it is, it is always a good idea to verify and test any models before the final
analysis is done.

Once the final analysis is completed, the results should be checked and verified.  This requires careful
scrutiny of the model and its results.  Do the results make sense?  Are they replicable by others or other similar
methods?  Do they contradict reality or other published work?  These are the kinds of questions analysts need to
ask and answer about each analysis.

MEET OR EXCEED MINIMUM EXPECTATIONS OF RISK ANALYSIS

There are some minimum expectations we should have for a risk analysis.  Point estimates of decision
criteria like benefit-cost ratios, net benefits, incremental costs, or changes in habitat units are generally not
acceptable as the sole output of a risk-based study. An analysis should at least include a sensitivity analysis that
relies on the use of some range of scenarios to demonstrate the potential impact of key uncertainties.  Preferably,
the analysis will consist of an analytical assessment of the risks associated with the project or a simulation that
estimates those risks in a probabilistic fashion.

DOCUMENT YOUR ANALYSIS
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Think about the future and take the time to document the risk analysis.  Computer printouts jammed into
a manilla folder will be of no use to you five months from now.  Nor will anyone who comes after you know what
you may have done if you do not take the time to document what you did in your risk analysis.  Documentation
need not be long or fancy, but it should be clear and it should allow someone else to follow and replicate your
work.

STEP 8:  COMMUNICATE RESULTS OF RISK ANALYSIS

The results of the risk analysis have to be communicated to decision-makers and stakeholders in a
manner that informs the decision process.  That requires a delicate balance of the right amount of detail.  Too
much and you lose your audience.  Too little and you lose the point of a risk-based analysis.

IDENTIFY REPORT’S AUDIENCE

For whom is the report being prepared?  Identify the reader of the report and prepare your analysis with
that person in mind.  A report that will be read by other analysts and scientists can be written quite differently
from a report prepared for general consumption.  Likewise, a report that is being prepared solely for review by
higher authorities within the Corps will be a unique product.  If, on the other hand, the study is customer driven,
then the primary audience is not the Corps of Engineers.  Each of these reports has a different focus.  Write for
your reader. 

TELL THE RISK ANALYSIS STORY

If you have a non-technical audience, describe the risk analysis the way it happened.  Chronology is your
friend.  These procedures may provide a serviceable working outline for telling your risk analysis story.  For
example,  “We began with a review of the available ecosystem evaluation models and chose the HEP analysis
because of its ease of use and its cost effectiveness. . .”  Make sure your story has a beginning, a middle, and an
end.

MEET OR EXCEED MINIMUM REPORTING REQUIREMENTS

Reporting the results of the analysis should accomplish at least the following four things.  First, specify
all assumptions underlying the analysis.  For example, if you are using a HEP procedure you are assuming that
your project’s most significant outputs can be reasonably represented by a change in habitat units.  Second,
identify those things that are known, those things that are unknown, and those things that are partially known that
could influence the study’s results and recommendations.  Don’t disguise precision in the cloak of accuracy.  If
you have spent one afternoon collecting field data, say so.  Third, describe the methods used to address the
uncertainty in your analysis.  If you have used sensitivity analysis or a simulation using a Monte Carlo process,
say so.  Let the reader know how they can gain access to your models or data if the need arises.  Fourth, present
the results of your analysis as clearly as possible.  Keep it simple.  Treasure transparency.
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SERVE THE RISK MANAGEMENT FUNCTION

The purpose of risk analysis is to inform the decision process, i.e., to improve the quality of decision-
making.  Risk analysis can be broken down into two parts:  risk evaluation and risk management.  The first seven
steps in these procedures are part of the risk evaluation.  That is the objective analysis that answers the question,
“How risky is this situation?”  Reporting the results of that evaluation moves us to the second function of risk
analysis.  Risk management answers the question, “What shall we do about it?”

The primary purpose of the reporting step is to present the results of the risk evaluation to decision-
makers so they can make fully informed decisions considering the major uncertainties they face.  Thus, the results
have to be relevant to risk managers and they must be effectively communicated.

SUMMARY AND LOOK FORWARD

This chapter offers a flexible set of eight standardized steps as guidance to those doing a risk-based
analysis of the environmental outputs of ecosystem restoration projects.  They are not a recipe for risk analysis.
Instead, they represent a strategy or flexible approach to risk analysis.  The next chapter describes some specific
tools that may come in handy while following these procedures.
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CHAPTER FIVE:  THE RISK ANALYSIS TOOLBOX

INTRODUCTION

Introducing risk analysis into ecosystem restoration planning requires tools.  The tools can be simple or
sophisticated.  There is a time and place for both.  This chapter introduces some of the more common tools
analysts might use in conducting the kinds of analyses presented in the case studies of Chapters Two and Six.

The chapter begins with a brief consideration of the models available.  Next, it turns to some important
considerations encountered when measuring things in a study.  Some useful aspects of probability are then
reviewed.  Sensitivity is introduced as a helpful means of exploring major uncertainties.  This is followed by an
introduction of the Monte Carlo process.  The chapter concludes with a section on simulation that brings many
of these concepts together.

MODELS

The case studies in this manual use the U.S. Fish and Wildlife Service HEP that relies on the use of HSI
models to estimate the number of habitat units for an indicator species.  Although that may be a common
approach to modeling ecosystem restoration project outputs, it is far from the only approach.

There are a variety of alternatives to the HEP analysis, like the Habitat Evaluation System (HES) and
Wetlands Evaluation Technique (WET).  A partial list of alternative techniques can be found in Appendix C of
EC 1105-2-210, June 1995, entitled Ecosystem Restoration in the Civil Works Program.  In addition to the
generic and regional techniques like those found in that appendix, analysts are becoming more inclined to develop
their own techniques and models.  For example, it would not be unusual for an analyst to combine one of the off-
the-shelf models for measuring ecological resources with state resource agency data and models to develop a
community model.  Or perhaps they might take a community model and add groundwater and water quality
models to develop an ecosystem model.  As the available techniques and models become better known and more
available, analysts are gaining the knowledge, experience and confidence to assemble models that meet the unique
needs of their studies.  One of the most effective ways to assure that your tool box is up to date is to make an
effort to stay abreast of new developments in ecosystem, community, habitat models and the like.

MEASUREMENT

Measurement is not a tool.  It’s a task.  But it’s a task that is the result of a great deal of uncertainty that
goes oddly unacknowledged.  Thus, we consider the measurement task as an important source of uncertainty.
This section offers no advice on how to measure things; there are far too many things to measure to address this
issue here.  It does, however, present some very basic notions that are important to bear in mind as you go about
your measurement tasks, especially if a risk-based analysis is going to be one of the methods you employ to aid
your decision process.
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EPA’s Guidelines for Ecological Risk Assessment

The Corps is not the only Federal agency struggling with how to incorporate risk analysis in ecological
investigations.  EPA is developing ecological risk assessment guidelines for use in making regulatory decisions (see
Draft Proposed Guidelines for Ecological Risk Assessment, EPA/630/R-95/002 October 1995).   They define
ecological risk assessment as, “The process that evaluates the likelihood that adverse ecological effects may occur or
are occurring as a result of exposure to one or more stressors.” 

EPA has developed a three-stage risk assessment process consisting of:  problem identification, analysis, and
risk characterization.  Although it differs somewhat from the needs of the Corps in evaluating ecosystem restoration
projects, there is much that could be adapted by Corps personnel in these guidelines.  In essence, the EPA process calls
for the identification of activities that produce chemical, biological and physical stressors to the environment.  These
stressors have ecological effects that impact “assessment endpoints” which express the environmental values society
is trying to protect.

The framework being developed offers the Corps analyst a structured way to think about ecosystem restoration
projects in general, not simply the risk assessment of such projects.  As such, anyone who will be working in this field
should make a point of becoming familiar with the framework and models in use by EPA and other Federal agencies.

POPULATION PARAMETERS AND THEIR ESTIMATES

Let’s begin with the often overlooked but obvious concepts of populations and their parameters.  There
are times when it is difficult to define the population and parameters of interest to our analysis.  When you’re
doing an habitat evaluation there is a specific area in which you are interested.  For example, it might be the
stream channel and its banks from Tentshow Dam to the Midnight River.  This is the spatial extent of our
population for this study, it’s the totality of the area in which we are interested.  Consider a variable like “average
maximum water temperature during the warmest part of the year.”  The variable definition helps us further define
our population of interest by providing some temporal dimension, the warmest part of the year, and some
additional description, average maximum water temperature.  The remainder of the temporal dimension is
provided by the study horizon; it could include the entire historical record as well as the project life.

We are seeking the temperature of water in a specific place, at a specific time, and under specific
conditions.  But we are interested in all situations that meet these criteria.  Our population is the collection of all
those situations that meet those criteria, e.g., all measurements of average maximum water temperature during
the warmest period of the year between Tentshow and Midnight for 25 or more years into the future.  So, the
population of interest is the maximum water temperature for the next 25 years.  This is clearly unknown and
unknowable.
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It can be difficult to understand this notion, but it is important to understand there is a population in
which we are interested.  This is going to be true for every variable of interest to us.  There is a true value of every
population parameter and there will be an average maximum water temperature in the future.  At the end of time,
if we have perfect information, we could calculate this value with great precision.  The analyst’s job is to estimate
that parameter now.

When we are estimating habitat variable values in the field, we are really trying to estimate some
population parameter’s value.  If we don’t understand the population we’re trying to describe with our
measurements, our chances of estimating its parameters accurately are significantly diminished.  Under the
pressure of budget constraints and schedule deadlines, it is sometimes easy to think of the purpose of measuring
a habitat variable as gathering data so you can estimate a project impact.  Get a number to get the job done.
There may be little thought given to uncertainty, especially if the measurement is carefully taken.  This is one
place, i.e., recognizing the existence of uncertainty, where the case for incorporating risk analysis into ecosystem
restoration must be clearly made. If you have one measurement for average maximum water temperature, it is
almost certainly not the population parameter.  If you have a hundred measurements, and they vary, it’s even more
clear that no one of them is the population parameter.

Your habitat variable value could diverge from the parameter value for many reasons.  If you stop at a
single access point, conditions might be remarkably different around the bend in the river.  You might be taking
your measurement on a day, in a month, or hydrologic year that is not representative of the long-term value of
interest to you.  Your measurement tool may not be properly calibrated.  No matter the reason, it is important to
realize that your data -- be they scant or abundant -- are only estimates.  

Even though all estimates are not created equal, they are all estimates.  Estimates of important habitat
variables, for example, those that constrain the quality of the habitat or that will be affected by the project, should
reflect the uncertainty inherent in them if we are going to estimate the parameter value as accurately as possible.
Interval estimates are a simple way to do this.

POINT VS INTERVAL ESTIMATES

Twenty-three point nine degrees Centigrade (23.9 EC) is a point estimate.  It is a specific number.  It is
very precise.  But it’s precision may belie its accuracy.  There are many instances in which precise numbers are
accurate.  There are 12 inches in a foot.  Saying there are between 10 and 14 inches in a foot is no less accurate
but the lack of precision subtracts from what we know about this relationship.  Most definitions are both precise
and accurate.  Unfortunately, ecosystem restoration planning involves very few definitions or relationships that
can be captured accurately and precisely with this simplicity.  What’s the average maximum water temperature?
We don’t usually know.  When we don’t know we usually offer an estimate.  What kind of estimate is more likely
to capture the true population parameter value, a point estimate or an interval estimate?  In virtually all situations
an interval estimate is going to be better.

Many factors contribute to the common reluctance to accept and address the uncertainty that abounds
in the world of ecosystem restoration planning.  Some of them relate to the fear of lack of closure.  Clearly we
cannot explicitly address all the uncertainty in the world.  If we tried we would never arrive at an answer, not to
mention the fact that we couldn’t afford it either.  It’s also not unusual for analysts to be unfamiliar with the tools
and techniques that would enable them to address the uncertainties that exist.
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We’d like to try to dispel some of these factors.  First, we do not advocate addressing all uncertainty, only
the major uncertainties. Likewise, many sophisticated tools and techniques have now been automated, to the point
that many more people can use them reasonably and responsibly.  Creating and using interval estimates of
important quantities is a simple and easy step in the direction of improving the quality of habitat evaluations and
the decisions made based upon them.  The next several sections explore some simple ways to develop interval
estimates.

Expert Opinion

Two universal problems in ecosystem restoration planning are lack of time and lack of money. Analysts
are already doing the best that can be done, given the time and money available for the task and the methods
available to them.  As a result, a great deal of information used in habitat evaluations is based on more-or-less
expert opinion.  There often is not enough time or money to do more detailed analysis. 

If you line up all the people who know about a subject matter according to how much they know, those
at the “most” end of the line are usually considered experts.  Sometimes there is a great deal of knowledge about
a subject matter, other times less is known.  In many cases, experts represent the best available information and
there are many times when planners are happy to have that.  Data collection for the case study relied heavily on
the knowledge of one man who worked and fished the Brown Sugar River more than anyone else.  He was an
expert and his judgments more often than not dictated the values that were used in the analysis summarized in
Chapter Two.

Expert opinion is an important and legitimate way to generate information.  It’s interesting to observe
how expert opinions about habitat conditions are often generated.  One expert might ask another, “What’s the
average depth of this water?”  The answer usually begins as “somewhere between 2 and 4.5 feet.”  Only after
some time and anguish does the expert usually pronounce the average depth to be “3.5 feet.”

What does such a process tell us about uncertainty?  It’s there.  The experts recognize it too, especially
when they are asked to estimate things.  When we force an estimate from “between x and y” to “z”, we’re
throwing away information.  Our suggestions for generating interval estimates via expert opinion are simple.
Give a minimum value that you’re sure (here, you can substitute different criteria, e.g., that you’re 95 percent
sure) will not be exceeded.  Do the same for the maximum possible value.  These two numbers define an interval
estimate.  It need not be any more complex than that.  If you also identify the most likely value in the interval,
you have enough information to define some simple probability distributions.  

Are some values or some range of values more likely than others?  Developing this information is a step
toward a subjective probability elicitation, discussed later in this chapter.  In any event, the costs of estimating
values in this fashion are no more than the costs of a traditional point estimate.  In some cases it takes more time
to get from a comfortable interval to a single point estimate so this could save time in some cases. 
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Confidence Intervals

Let’s begin with a distinction between intervals and statistical confidence intervals or confidence
intervals.  If an expert says, I’m 90 percent sure the average maximum water temperature is between 21 and 27
degrees, that’s just an interval estimate, even if the expert has offered her degree of confidence about it.  The
simple interval estimates described above can be improved if they are confidence intervals.  

A confidence interval usually looks something like this:  “the 95 percent confidence interval for the
average water depth is between 21.9 and 26.0 EC.  We want to make two points about interval estimates.  First,
you cannot make these kinds of statements unless you have derived the numbers through a process that generates
information that is representative of the population of interest.  Second, these intervals are often misunderstood.

Given the above statement, many analysts would be tempted to say it means you’re 95 percent sure the
true population value lies somewhere between 21.9 and 26.0 EC. As common as that interpretation is, it’s not
really the correct one.  The confidence interval really means that if we repeated the process of generating interval
estimates like this a large number of times (quite possibly getting a different interval each time), 95 percent of
the intervals would include the true parameter value.  That has come to be interpreted as “we’re 95 percent sure
the true value is between 21.9 and 26.0 EC.  Although it is not technically correct, it’s probably not too bad to
interpret a confidence interval as the probability the true parameter value has been captured by the interval.  We
will use the less rigorous interpretation of the confidence interval in this manual.

SAMPLING 

Many habitat models, like the HSI models used in HEP analysis, require variable measurements.  The
ideal would be to have population data so parameter values can be calculated.  It would be a rare instance to have
population data available.  It’s almost always too expensive or too time consuming to conduct a census of the
entire population.  In other cases, its impossible to get population data.  We can never have a census of hydrologic
data because future flows are impossible to know.  We can’t possibly know average maximum water temperature
for the next 25 years.  In other cases, gathering data destroys the elements of the population.  For example,
bioassays of fish tissue based on a census would destroy the fishery, but it would provide some really good data!

When a census is impractical, we have to rely on sampling.  If a census measures the characteristic of
interest for every element of the population, a sample measures the characteristic for some subset of the
population.  The case study relied on a sample.  The project area was divided into four reaches.  Sample data were
collected at one access site in each reach.  For most variables there was a sample of one observation.   This is the8

easiest kind of sample to take.

There is no legitimate way to take information from a single observation sample and make statements
about the population from which the measurement was taken with any degree of statistical confidence.  In other
words, you can’t create confidence intervals with these kinds of data.  It is, however, still perfectly acceptable to
express the measurement of interest as an interval based on expert knowledge of the area.  Such intervals may
have little more than the reputation of the experts to back them up but such expert knowledge often represents
the world’s best available information.  Sometimes it’s the only available information.
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Statistical or probability samples usually provide a basis for markedly improved estimates of population
parameters, especially when experts are involved in their collection.  The most important characteristic a sample
can have is representativeness.  We want a sample that is representative of the population from which it has been
taken.  Then when we calculate the means, minimums, proportions, and so on in the sample, we can be reasonably
sure they are representative of the population from which they’ve been taken.  This enables us to say we think
the population parameter is like our sample value.  While numerical measures of populations are called
parameters, the same numerical measures of samples are called statistics.

The best way to get a representative sample from a population is to take a random sample.  There are
a great number of different ways this can be done.  A forthcoming IWR Report National Economic Development
Procedures Manual-Sampling Methods Primer, describes some of these methods and provides references for
additional details.  Samples taken from convenient access points as was done for the case study are not random
samples.  Hence, they simply describe conditions at the access points, no more and no less.  We cannot use these
data to make inferences about conditions along the entire reach unless there is some expert knowledge that can
verify their representativeness.

As you might suspect, there is a great temptation to collect field data from locations that are readily
accessible.  Undoubtedly, the analysts will take advantage of the expertise that is available to them, but that often
comes down to District personnel who might be seeing the area for the first time.  That is often the reality.  There
is no reason to apologize when this happens.  However, professional standards would seem to require that
estimates of population parameters obtained under these conditions should account for the substantial
uncertainties that exist by at least using a sufficiently broad interval estimate.

It is not the intention of this manual to imply that detailed analysis must be undertaken anytime
ecosystem restoration is done.  There may well be times when it is appropriate to estimate habitat conditions from
photographs, single access points, or even telephone conversations.  However, there will also be times when it
is appropriate to do more analysis, to be more sure of the parameter values.  When a project is controversial,
costly, important, or otherwise worthy of more careful decision-making, it will be desirable to collect data based
on a statistical sampling design.  Regardless of the method of collection, interval estimates are always preferred
to point estimates in the face of uncertainty.

Sample Error

Suppose you randomly select and measure the depth of water at 40 locations in a study area and calculate
the mean of these 40 measurements.  Will the sample mean, i.e. the average of your 40 depth measurements, equal
the population mean, i.e. the true average depth of the water?  There is no way to know for sure, but it almost
certainly will not; or, if it did it would be by “dumb luck” and we wouldn’t even know it.  How can we say such
a thing?  Suppose you randomly selected 40 different locations and calculated that sample mean.  Would it be
the same as the first one?  It almost surely would not be.  We expect our sample statistics to differ from our
population parameters for two reasons.  One of them is sample bias.  

Sample bias is the tendency to select or not select certain population elements.  For example, using
convenient access points to collect data is a source of sample bias.  What you tend to see are conditions that
accompany access points.  These might be the access points because they are particularly scenic or particularly
remote.  The access points may have been impacted by human activity in ways other sites are not.  The bottom
line is that these points may not be representative of the entire population.  In a related fashion, a bias toward
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access points might mean we are never going to observe conditions in the more remote/rustic/less attractive
sections of the study area.  Sample bias can arise in a variety of other ways as well. Careful study design can
eliminate sample bias.  This is an avoidable problem.

The second source of error in a sample is sample error.  This cannot be eliminated.  Think of it as a
“dumb luck” factor.  Even if we have a carefully designed sample, our randomly selected elements may not be
representative of the population, just by dumb luck.  Consider a situation in which a marsh is an average of 31
inches deep.  It’s conceivable that your very careful sample design randomly identifies 40 locations that have an
average depth of 20 inches.  Just by “dumb luck” your randomly selected locations were all unusually shallow.
Could this happen?  Sure.  If we know such things could happen and with one sample we have no certain way of
knowing if it did happen, then we cannot ignore the existence of sampling error.  We have to address it in our
estimates if our analysis of habitat conditions is going to yield realistic and reliable results.

Sampling Distributions

Imagine a large marsh.  Suppose we want to know its mean depth (or mean pH, salinity, temperature,
DO, and so on).  There is no practical way to take a census of the population.  Further suppose this is a
controversial, expensive study in which results are going to be quite sensitive to project impacts on the habitat
variables we are measuring.  This might be a situation in which an expert’s interval estimate is not going to be
good enough.  We need something better.

Now imagine that we randomly select 40 longitude and latitude locations in this marsh, locate them with
the Global Positioning System (GPS) and take the measurements we’re after.  It is not hard to imagine that there
could be literally millions of different sets of 40 locations.  Each set of 40 locations would have a sample mean
value.  There would be a lot of very different samples means.  Some of these values might come up again and
again.  Other more extreme values, for example suppose the 40 shallowest (saltiest, and so on) points in the
marsh, will come up only once or very infrequently. 

Figure 9 shows the distribution of all the possible sample means that we might obtain.  This is a sampling
distribution and it is different from a probability distribution.  The probability distribution is a picture of how the
population values are distributed.  The probability distribution would be a distribution of the actual depths
(salinities, etc.) of the marsh.  That may not even be a normal distribution.  The sampling distribution of Figure
8 shows how all the conceivable sample means taken from samples of size 40 are distributed.



 Figure 8: Sampling Distribution
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There are a couple of things worth noting.  First, the sampling mean distribution will be a normal
distribution if the sample size is large enough.   Second, the mean of the sample means is equal to the population9

mean.  This is important.  If there are more numbers near the mean of the distribution than at the tails, then chance
suggests that we are more likely to get a sample mean near the true mean than to get one far away from it.  Third,
it is possible, although relatively unlikely, that we will get a sample mean that is very different from the true
population parameter.

How can we deal with these chance elements?  Well, the standard deviation of this sampling distribution,
which we give the special name “standard error,” gives us an idea of the probability of the various values being
obtained.  The next two sections offer examples of how to use our knowledge of the existence of sample error
to estimate confidence intervals that could then be used in our risk-based analysis. 

Estimating a Population Mean

The true average depth of a marsh is 40 inches.  That is a number unknown to us, but a number we are
trying to estimate.  Suppose we randomly select the 40 locations at which we take the careful measurements
shown in Table 5.

The sample mean depth is 38.09 inches.  It’s the only estimate we’re going to have.  It represents the best
data available.  What we don’t know is, is this a good estimate or not?  Because we understand sampling error
we know our estimate probably doesn’t equal the true population parameter value (which, of course, it does not).
So, we have some uncertainty we have to address.
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Table 5:  Random Sample of 40 Marsh Depth Measurements

45 49 27 36

39 47 43 33

41 64 28 38

45 35 39 41

46 36 42 52

25 35 22 45

18 40 16 33

26 51 38 52

43 38 34 24

50 45 35 27

Ninety-five percent of all the possible values in a normal distribution fall within ±1.96 standard
deviations of the mean.   The standard deviation  of our sample is 10.18 inches, but the standard deviation of10    11

the sampling distribution we’re working with is the standard error.  Because the population has an infinite number
of points that could be sampled, the standard error  is the standard deviation of the sample divided by the square12

root of the sample size.   The standard error is 1.61 inches.13



(5) x ± zFx

(7) p ± zFp
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To calculate a 95 percent confidence interval we use the following formula:

That is the sample mean plus or minus z, the number of standard deviations (in this case, standard errors) times
the standard error.  Numerically, we obtain:

(6)    38.09±1.96(1.61)

We are 95 percent sure the true mean marsh depth is somewhere between 34.93 and 41.25 inches deep; or, the
mean marsh depth is 38.09 inches ± 3.16 inches.  Because we peeked at the true mean, we can see our interval
has captured the true value.  When we do our analysis we could use 38.09 inches as if it is the true value.  This
is common practice when risk analysis is not used.  We could use 38.09 as the most likely value and do a
sensitivity analysis that uses 34.93 and 41.25 inches to see if they make a significant difference in the outcomes.
Or, we could express the uncertainty as a sampling distribution that is a normal distribution with a mean equal
to our sample mean of 38.09 and a standard deviation equal to the standard error of 1.61.  With spreadsheet
software and a growing array of decision analysis software, it is a simple matter to exercise any of these options.

Estimating a Population Proportion

In habitat evaluation there may be a need to estimate population parameters other than the mean.  A
population proportion is the number of population elements that has a particular characteristic divided by the
number of population elements.  Suppose, for example, we’re interested in the number of stocked trout that have
grown to a size in excess of 1 kg.  A random sample of fish would be caught, weighed and returned.  The sample
proportion, p, of fish in excess of 1 kg would be used to estimate the population proportion in excess of 1 kg.

A population proportion is not estimated the same way a mean is, but there are many parallels.  First,
we want a sample proportion to be representative of the population so we rely on random samples.  Inasmuch as
there are many possible samples that can be drawn, each with its own sample proportion, some of which would
occur frequently while others would be rare, there is a sampling distribution of sample proportions.  The mean
of this distribution is the population proportion.  The sampling distribution also has a standard error.  The 95
percent confidence interval estimate of the population proportion is based on the sample proportion plus or minus
1.96 standard errors of the proportion as shown below:

Suppose in a random sample of 217 fish in the Brown Sugar River, 29 were in excess of 1 kg in weight.
The sample proportion would be 0.1336, 29 of 217 fish.  The standard error of the sample proportion for this
infinite population is:



(8) Fp '
B(1&B)

n

(9)
.1336(1&.1336)

217
' 0.0231

(10) 0.1336 ± 1.96(0.0231)
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where B is the population proportion.  Because B is clearly not known, we estimate it with p, the sample
proportion.  In this case the standard error is:

So, the point estimate of the population proportion, 0.1336, which we expect to be off from the true proportion
can be expressed as an interval estimate via equation (3) as follows:

This yields a 95 percent confidence interval of the population proportion of 0.1336 ± 0.0453 or an interval from
0.0833 to 0.1789.  Thus, we’re 95 percent sure that somewhere between about 8 and 18 percent of all the fish
weigh in excess of 1 kg.

Once again we have several options for describing this situation.  Our single best estimate is 0.1336.
The minimum and maximum values are 0.0833 and 0.1789.  Or, we can describe our estimate of the population
proportion by using a normal distribution  with a mean of 0.1336 and a standard deviation of 0.0231.14

PROBABILITY

When data are gathered in a random sampling process, the uncertainty due to sampling error can be
expressed via the parameters of the sampling distribution, i.e, its mean and standard error.  When uncertainties
can be expressed in this manner, probability becomes the language of uncertainty.  The following section reviews
a few important points about probabilities.
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WHAT IS PROBABILITY?

Probability is the chance that something will or will not happen.  It takes a value between zero and one.
Something that has a probability of 0.5 has maximum uncertainty, it’s as likely to happen as not.  Probabilities
can be expressed as a decimal (0.01), a percentage (1 percent), a fraction (1/100), or as odds (99:1).  These are
equivalent ways of presenting the same probability.

WHERE DO PROBABILITIES COME FROM?

Probabilities can be estimated analytically.  For example, if we define an event (like tossing a die) having
n (e.g., 6) possible outcomes that are equally likely, then it’s easy to calculate the probability of any one particular
number as 1/n (e.g., 1/6).  Analytical probabilities will not often be available for use in ecosystem restoration.

Probabilities can be estimated empirically by observing how often something has actually happened.
For example, if you catch the red light at the bottom of your street about 70 percent of the time, what’s the
probability it’ll be red the next time you reach it?  Seventy percent.

Probabilities can also be estimated subjectively.  What’s the probability that the weir will actually
increase DO levels to at least 6 mg/l in the Brown Sugar River?  There is no formula we can use to calculate this.
We can’t use empirical data, it’s never been done here before.  But we can get experts to estimate the probability
that this will happen based on experience at other sites, scientific knowledge, and experience. 

PRESENTING PROBABILITIES

Probability is often the preferred language for expressing risk or uncertainty.  Probabilities, whatever
their source, can be represented in three basic ways:  as a point estimate, as an interval estimate, or as a
distribution.  The probability of rolling a six is 1/6, an analytical probability point estimate.  The probability of
a flow in excess of 25,00 cfs, for example, is 0.01, an empirical probability point estimate.  The probability the
Orioles will win the World Series next year is 10 to 20 percent, a subjective probability interval estimate.  Each
of these events is related to the probability of a specific event (a six or a win) or a specific range of events (flows
equal to or greater than 25,000 cfs). 

If we are going to use a Monte Carlo process, we’ll need to be able to express the probabilities of any
range of events.  Suppose, for example, we’re interested in the probability that DO in mg/l with the project is less
than four, four to five, five to six, or more than six.  In this case, it is best to use a distribution to represent the
probability of the various events of interest.

Distributions

Probability distributions show the distribution of the entire population.  You can think of it as sort of a
histogram of the entire population.  The values the population elements can take may be discrete or continuous.
The population may be finite or infinite in size.  Sampling distributions show the distribution of all the possible
sample statistics that can be drawn from a population in a sample of some given size, n.
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An example of a probability density function (pdf) is the familiar bell-shaped normal distribution.  There
are an infinite number of pdf’s, but several families of pdf’s have been identified over the years.  These families
of pdf’s, like the normal, exponential, binomial, Weibull and so on, are described by an equation for the pdf and
a number of parameters.  For example, the equation for the family of normal distributions is given below:

As horrible as this might look, the values of B and e are well known.  The value of x is determined by your data,
so the only unknowns are µ and F.  These represent the mean and standard deviation of the population and they
are constants for any given population.  Thus, once we know the population parameters we can very precisely
draw any normal distribution by simply substituting values for x and plotting the f(x) for the given x.

Other well known pdf’s work essentially the same way.  There is an equation that describes the
distribution and one or more parameters must be substituted into the equation to locate the distribution on the
number line and to give it its shape and scale.  Distributions are required for Monte Carlo simulations and
distributions can be useful for calculating expected values as well as for other purposes.  The following sections
introduce some distributions that might be useful in ecosystem restoration simulations.

Some Useful Distributions

Which distribution should you use to represent the uncertainty attending a variable?  In brief, the choice
of a distribution can be guided by actual data and statistical goodness of fit tests or they may be governed by
theory, the previous work of others, judgment, or pure guesswork.  For a more extended discussion and additional
references, see IWR Report 96-R-8, An Introduction to Risk and Uncertainty in the Evaluation of
Environmental Investments.

The distribution you select to model your uncertainty may itself be a source of uncertainty.  Suppose we
have estimated minimum, mean, and maximum values of the average maximum water temperature of 21.5EC,
23.9EC, and 26.3EC.  Should you use a uniform distribution, a normal, a triangular, or a more complex
distribution to represent the uncertainty in this temperature measurement?  If you are working from judgment or
guess work, it may be important to do a sensitivity analysis in the form of the distribution.  For example, if you
describe water temperature as a uniform distribution, try a triangular and a normal distribution and see if it makes
a significant difference in your results.  Examples follow in the paragraphs below.

Uniform Distribution

The uniform distribution is a two-parameter distribution that requires a minimum value and a maximum
value as its two parameters.  The pdf is a rectangle on the number line with its extent defined by the maximum
and minimum values.  In a uniform distribution, any number between the two extremes is assumed to be equally
likely.  This distribution is best used when there is no reason to expect that any one value in the range of
possibilities is any more likely than any other value.  If this distribution is used as a simple default, some
sensitivity analysis is in order.  Figure 9 shows a uniform distribution with a minimum estimate of the average



Figure 9: Uniform Distribution of Temperature
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maximum water temperature of 21.5EC and a maximum values estimate of 26.3EC.  Any value between these
two extremes is assumed to be as likely as any other value.

Triangular Distribution

The triangular distribution is a three parameter distribution that requires a minimum, a maximum, and
a most likely value.  The most likely value is the mode, not the mean.  The mean is the average of these three
parameters.  The triangular distribution is commonly used as a default distribution when there is limited
knowledge about the true underlying distribution.  The assumption of a triangular distribution should be subjected
to some sensitivity analysis.  Figure 10 shows a triangular distribution with minimum of 21.5EC, a most likely
(mode) of 23.9EC (which also happens to be the mean in this case), and a maximum of 26.3EC.  Values near the
mode are more likely than values near the extremes.  The actual minimum and maximum values cannot be
obtained although values arbitrarily close to them may be.

Normal Distribution

The normal distribution is probably the best known distribution.  To identify a normal distribution you
need a mean and a standard deviation.  Random sampling techniques can lead to the estimation of a sample mean
and the standard error of a sampling distribution.  These two parameters are sufficient for specifying an entire
distribution of values that quantify uncertainty due to sample error.



Figure 10: Triangular Distribution of Temperature
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The mean or expected value is frequently estimated in subjective assessments of habitat variables.  If
minimum and maximum values are also obtained they can be used to approximate a standard deviation.  The
standard deviation can be approximated by dividing the range in values by six.  Plus or minus three standard
deviations in a normal distribution includes about 99 percent of all possible values, hence the division by six.
Figure 11 shows a normal distribution with a mean of 23.9 and a standard deviation of 0.8 (i.e., (26.3-21.5)/6).

SUBJECTIVE PROBABILITY ELICITATIONS

Subjective probability elicitation is a technique for obtaining expert judgements about the likelihood of
uncertain events in a fashion that will support estimation of a pdf or cumulative distribution function (cdf).  For
example, the with project condition for DO in the case study is uncertain.  If we want to represent this uncertainty
via a probability distribution the most practical way to obtain that data would be asking an expert or experts.
For additional description of this technique and for more references see Yoe (1995). 

MONTE CARLO PROCESS

Given a probability distribution, a Monte Carlo process is a technique used to draw a purely random
sample from the distribution.  It relies on the use of random numbers or pseudo-random numbers to sample from
a probability distribution.  Monte Carlo was a code name used for the simulation of problems associated with the
development of the atomic bomb during World War II. 



Figure 11: Normal Distribution of Temperature
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A Sample Elicitation

Although there is much more to the art of eliciting subjective probabilities from an expert, consider the
following example.  Suppose we asked an expert the absolute minimum DO that might result from a given alternative
configuration of the weir and its minimum flows and he says 4 mg/l.  Then, suppose we asked the absolute maximum
imaginable DO and we are told it is 8 mg/l.  These two values define the range over which DO with the project might
vary. 

There is a 0 percent chance of a number below 4 mg/l and a 100 percent chance the value will be 8 mg/l or
less.  All we need are a few intermediate points.  So, we ask the expert the probability of 6 mg/l or less and he might
say there is a 40 percent chance of this.  By carefully selecting a number of intermediate values, we can flesh out the
expert’s cumulative distribution function for DO outcomes.

This is a method that can be easily abused.  The methods by which the data are obtained are not as simple
as portrayed here.  It would be best to consult an analyst experienced in subjective probability elicitation before
attempting this on your own.



Figure 12:  Monte Carlo Sampling
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Suppose, for example, we have a random variable that has a normal distribution with a mean of 0 and
a standard deviation of 1.  Its cumulative distribution function is shown in Figure 12.  If we want a sample of five
numbers from such a distribution a Monte Carlo process can be used.  Samples drawn by a Monte Carlo process
are more likely to be drawn from areas of the distribution that have a higher likelihood of occurring. In the figure
we see four of the five numbers are relatively close to the mean of 0.  With a small sample there is a possibility
of obtaining results that are not representative of the entire range of numbers.  If we took a sample of several
thousand, however, we’d expect numbers smaller than -2.0 to occur about 2.28 percent of the time.   We’d15

expect values of 3 or less about 99.87 percent of the time (conversely we’d expect values greater than 3 about
0.00135 percent of the time), and so on.  In the long-run, most values selected would cluster around the mean.
For example, almost 68 percent of all values would be between -1 and 1 in a Monte Carlo process.  In short, the
Monte Carlo process is a method of drawing a representative sample from a probability distribution.

SIMULATION

The case study in this manual is intended to demonstrate, among other things, that it is possible to do
this type of analysis within a spreadsheet environment.  To demonstrate that possibility, a detailed risk-based
analysis is described in Chapter Six. There are, perhaps, two requirements of the Chapter Six analysis that
deserve discussion here.  First, there is the question of how to build the HSI model in a spreadsheet framework.
Second, there is the question of how to incorporate a Monte Carlo procedure in the simulation.
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BUILDING AN HSI MODEL IN A SPREADSHEET

As described in Chapter Two, most HSI models are actually rather simple to understand.  You begin by
measuring conditions for a varying (depending on the model you are using) number of habitat variables.  The
model presents a series of suitability index graphs for each habitat variables.  These graphs enable the analyst
to “translate” a habitat variable into a suitability index.  The suitability indices are then combined via a
mathematical equation into a series of model components or life requisite values (LRV).  The life requisite values
are, in turn, mathematically combined to produce an HSI.

Reproducing the mathematics of the LRV and HSI calculations in a spreadsheet environment is a very
simple matter for anyone with a working knowledge of spreadsheets.  There will be plenty of help with this task
in any District office.  Reproducing the suitability graphs in a spreadsheet can be a little tricky if your spreadsheet
skills are very basic, so let’s look at a couple of examples from the rainbow trout HSI model.

Figure 13 shows the suitability index graph for habitat variable V , average annual base flow regime14

during the late summer or winter low flow period as a percentage of the average annual daily flow.  It is a
piecewise linear relationship, i.e., the graph is described by two linear segments.  In a spreadsheet, the variable
might appear as shown in Table 6.

Table 6: Sample Spreadsheet Presentation of V14

V14:  Average Annual Base Flow 2 0.04
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Deriving Linear Equations from Two Points

To determine the equation of the straight line in Figure 13 all we need are two points from the line.  Two of
the easiest to use are the terminal points of the line.  One of them is (0,0) the other is (1.0, 50).  With them we can
determine the slope and vertical intercept as shown below.

To calculate the slope of the line use the formula “rise over the run.”  In this case the line rises from an SI
value of 0 to a value of 1.  So the rise is 0 - 1 = -1.  The equation runs from a variable V  of 0 to 50.  The run is 0 -14

50 = -50 and -1/-50 = a slope of 0.02.  You would get the same slope if you had reversed the order of the points, i.e.,
1 - 0 =1 and 50 - 0 = 50 and the slope is unchanged.

To calculate the vertical intercept, b, of the straight line use the following equation:

SI = b +0.02*V14

Select any point on the line and substitute its values in for SI and V , then solve for b.  The easiest point to use here14

is (0,0) which yields b= 0, which, in this case, was easily seen from the graph itself.  In other cases the lower left of
the graph will not be the point (0,0), so care must be taken to carefully calculate the intercept.

We can now write the equation of this straight line as:  SI = 0.02*V .14

The first column (call it cell A28) contains text sufficient to describe the variable.  The second column (call it cell
B28) contains the measurement of the habitat variable.  In a deterministic analysis it is a single value, like 2.  In
a risk-based analysis using a Monte Carlo process, this cell might contain the code required to
describe a distribution  like: =risktriang(1,2,5).  This means we think the habitat variable has a triangular16

distribution with a minimum value of 1 percent, a mode of 2 percent, and a maximum value of 5 percent. The
third column (call it cell C28) takes the value of cell B28 and returns the corresponding SI value, based
on the SI graph of Figure 13.  Cell C28 contents  could look like this: =IF(B28>=50,1,(0.02*B28)).17

This last cell entry uses a logical “if statement”.  It says, if the value in cell B28 (in this example, 2) is
greater than or equal to 50 return the value 1.  Thus, an average annual base flow during late summer or winter
low flow in excess of 50 percent of the average annual daily flow is ideal for the rainbow trout.  The cell formula
goes on to say that if the value in B28 is less than 50, then take the value in B28 and insert it into the linear
equation: SI = 0.02*B28.  In this example, B28 = 2 so the SI is 0.04, as shown in Table 6.

Piecewise linear functions are easy to deal with and are perfectly accurate as long as care is taken in doing
the algebra.  Some SI graphs are more complex, however, and present bigger challenges.  Consider the SI graph
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of Figure 13, for example.  This curve is for the variable V , annual maximal or minimal pH.  It might appear13

in a spreadsheet as shown in Table 7.

Table 7:  Sample Spreadsheet Presentation of V13

V13:  Maximum Minimum pH 7.5 1

Column one (call it A27) is a description of the variable, column two (call it B27) returns a value from
a probability distribution similar to the one described above for Table 7.  Column three (call it C27) is a bit more
complex.  It’s Excel syntax formula  follows:18

= I F ( B 2 7 < = 5 . 5 , 0 , ( I F ( A N D ( B 2 7 > 5 . 5 , B 2 7 < = 6 . 5 ) , - 2 0 . 5 8 8 + 4 . 7 7 5 * B 2 7 -
0.0345*B27^3,(IF(AND(B27>6.5,B27<=8),1,(IF(AND(B27>8,B27<=9),-23.805+4.8207*B27-
0.0269*B27^3,0)))))))

These formulas are more tedious than difficult.  Keeping the parentheses straight is often the greatest
challenge in creating these formulas.  Let’s look at the formula piece-by-piece.  The formula uses a series of
nested logic statements based on the IF and AND functions of the software.  This example proceeds from left to
right along the number line to make it easier to follow.

The formula says if pH is less than or equal to 5.5, the SI is 0.  If pH is over 5.5 and less than or equal
to 6.5, then take the value for V , found in cell B27, and insert it into the equation:13

(12)    SI = -20.588+4.775*V -0.0345*V13 13
3

The formula goes on to say if the pH is greater than 6.5 but less than or equal to 8, it’s ideal and the SI should
take a value of 1.  If the pH is greater than 8 but less than or equal to 9, the SI is determined by a different
nonlinear equation:

(13)    SI = -23.805+4.8207*V -0.0269*V13 13
3

For all other pH values, i.e., those in excess of 9, the SI again assumes the value 0.  The formula covers all
possible values as per the instructions of the SI graph.
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Curve Estimation 

The equations used for this manual were obtained via curve estimation.  The datasets were obtained by
carefully obtaining points, e.g., suitability index-habitat variable measurement pairs, directly from the SI graphs.  V13

values for SI’s of 0, .1, .2, etc. were obtained as were SI values for pH’s of 5, 5.5, 6, etc.  In this way, you can develop
a dataset from which a curve can be estimated.  It is recommended that a separate curve be estimated for each nonlinear
segment of the graph.  Thus, for V  two nonlinear curves were estimated.13

Curve estimation is a skill that cannot be taught or much discussed in this manual.  There are many software
packages that have automated curve estimation routines. For example, SPSS for Windows was used in this exercise.
However, if a curve estimation routine is not available, it is worth noting that many, if not most SI graphs, can be
described by a quadratic or cubic equation. These equations can be estimated via multiple regression routines. 

To estimate cubic and quadratic equations you need to both square and cube the habitat variable values, in
the current example, the pH values.  The quadratic equation makes the SI a function of the habitat variable and the
habitat variable squared.  For the cubic equation you use the habitat variable, the habitat variable squared, and the
habitat variable cubed as the set of dependent variables. Include a constant in both equations.

Although you can expect fits that are very good, for example adjusted R-bar squares of 0.99 or more are
common, you can find problems from time-to-time.  For example, computer programs might report your coefficients
to four decimal places.  When you use an equation with this precision you might find SI’s greater than 1 or less than
0 resulting.  These problems can usually be corrected by using more precise estimates of the coefficients.  Several such
problems found during this analysis were corrected by using coefficients with eight decimal places rather than four.

The greatest challenge when faced with piecewise nonlinear functions like this one is estimating the
nonlinear functions.  The ideal situation would be to contact the model’s authors and obtain the exact equations
used.  In many cases the authors are unavailable or the exact equation was never identified.  In these cases, curve
estimation is the best way to estimate the nonlinear functions.

There may be times when you encounter an SI graph that you cannot estimate satisfactorily using curve
estimation techniques.  When that is the case, you may use the dataset you develop for curve estimation directly
in the model.  In such a case you would use the spreadsheet’s vertical lookup capabilities.  The following sidebars
illustrate both of these techniques.

SENSITIVITY ANALYSIS

Sensitivity analysis systematically changes the value of key variables in a model in order to examine the
effect of that change on the model’s outcomes.  Each different value of a key variable leads to a different scenario
and perhaps a different outcome.  For example, we could change the without project condition DO measure from
0 to 1 and see if it makes a difference in the number of habitat units created by the project.  We could then change
it to 2 or any other value and again look at the results.  If the changes make no
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Lookup Tables

Lookup tables are used to find one piece of information that is based on another piece of information.
Consider the following partial table:

V13 SI

5.5 0.0

5.6 0.1

5.7 0.2

The table represents the paired-values dataset that can be developed from an SI graph in a HSI model.  These numbers
are from the positively sloped nonlinear curve for V .13

Let the first V  value be cell B17 and the first SI value cell C17.  Column B contains the compare values.13

Compare values must be listed in ascending order.  Column C contains the lookup values, they correspond to the
compare values in the first column.

When compare and lookup values are arranged in columns as shown, you would use the VLOOKUP function,
i.e., the vertical lookup function of the spreadsheet software.  A typical VLOOKUP function has three arguments:  a
lookup value, a table array, and a column index number.

Suppose the value in cell B18 containing the habitat variable value for V , pH, is 5.6 and you are using a13

table of values instead of an equation to estimate the SI.  A typical entry in cell C18, which would return the SI value,
might say:  =VLOOKUP(B18, B17:C19,1).  This simple function says, look at the number in cell B18.  Now go to
the array of numbers located in cells B17 through C19 and look in the first column of that array for the value in cell
B18.  When you find that value, move one column to the right (this is the 1 in the VLOOKUP arguments) and return
that number found there.  The 5.6 in cell B18 would result in the value 0.1 being returned in cell C18.

The one trick with this method is that you may have to use a rounding function as well.  If a pH of 5.62 were
to appear in cell B18, perhaps generated as the result of a Monte Carlo process, the VLOOKUP function would not
find that value in the table array.  Thus, you must round the value in cell B18 to a number of decimal places that
corresponds to the precision of your look up table.  The C18 cell formula could be modified to
=VLOOKUP(round(B18,1),B17:C19,1) to do just that.

difference to our decision to implement or not implement the project, then we need not be concerned about the
uncertainty that might accompany the actual levels of DO in the future without a project.

On the other hand, if the results of the sensitivity analysis suggest we would implement the project in
some situations but not in others, then we need to take steps to eliminate some of the uncertainty, if possible.
More data collection or more advanced analysis might provide information to clarify the situation.  In other cases,
it may be necessary for experts to quantify the likelihood of the various outcomes.
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Sometimes the value a key variable can take might be controllable.  For example, the amount of water
released from the Tentshow Dam can be set by us.  Other variables might be random and beyond our  control,
like DO in the future.  Sensitivity analysis would require a calculation of changes in habitat units for every value
of the user-controlled variables or a calculation for significant levels of variables that are beyond our control.
This can become unwieldy.

Suppose we wanted to know what happens to habitat units if our estimates of DO without and with a
project differ.  Now we are setting the values for two variables.  Thus, we’d calculate habitat units for a without
project DO of 0 and a with project DO of 6, then do 0.5 and 6, 1 and 6,  1 and 5, 0.5 and 5, and so on. It does not
take much imagination to see that it does not take long for a sensitivity analysis to get out of hand.  But if you
want to know the results of a specific combination of key variable values, sensitivity analysis is the best way to
do that.

It’s always possible to do some sensitivity analysis, even in the cheapest, fastest studies.  If key
uncertainties have been identified and variables are estimated as intervals rather than as points, then it should be
rather simple to identify habitat variable values that would lead to the worst case (those that would minimize the
change in habitat units) with and without project conditions.  Habitat units can be calculated for the worst case
scenario.  Then the best case with and without project conditions (those that would maximize the change in
habitat units) could be estimated for another scenario. 

When the extreme condition scenarios have no significant impact on the study results, then you can quite
confidently assume your decision is not sensitive to the uncertainty present in your analysis.  When the decision
might vary, additional work is going to be required.

SUMMARY AND LOOK FORWARD

Earlier chapters have discussed various aspects of a risk-based evaluation of the outputs of an ecosystem
restoration project.  This chapter has presented some ideas and tools that can be used in such an analysis.  Model
and measurement ideas were presented to focus on the potential for model uncertainty as well as the pervasive
existence of uncertainty.   Perhaps the most important idea presented in this chapter is that it is usually as easy
or even easier to estimate variables as an interval as it is to estimate them as points.  An overview of sampling
and probability was provided to lead the reader into a brief introduction to the Monte Carlo process and
sensitivity analysis, two of the most useful tools in the risk analyst’s toolbox.
The next chapter uses some of these tools in a detailed example that applies the eight step process described in
the previous chapter to the case study presented in this manual.
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CHAPTER SIX:  IDEALIZED CASE STUDY

INTRODUCTION

Chapter Two summarized the HEP analysis used in a recent Corps Section 1135 study.  The analysis
presented a single-valued estimate of the change in habitat units that would result from a variety of weir
alternatives.  Some sensitivity analysis was conducted by setting a few habitat variables to selected values and
recalculating the change in habitat units.  A Monte Carlo simulation was used to estimate a distribution of
changes in habitat units.  The simulation allowed the habitat variables changed during the sensitivity analysis
scenarios to vary according to a probability distribution.  The end result of this analysis demonstrated very little
in the way of significant results.  The changes in habitat units identified by these analyses were relatively minor.
Sometimes, that will be the case; the uncertainities will have little or no impact on the planning process.  When
it is, you can proceed with more confidence in your recommendations.  But that will not always be the case, and
when it is not, a risk-based analysis is the best aid to decision-making. 

Chapter Three presented a number of lessons learned from the case study.  These lessons and the needs
of Corps planners were considered in the development of a set of flexible procedures to be used in the evaluation
of environmental outputs for ecosystem restoration projects.  This chapter demonstrates how the procedures could
have been applied in this case study had they been available at the initiation of the study.  In doing so it
accomplishes two goals.  First, it demonstrates the feasibility of applying the procedures in a relatively typical,
low budget analysis.  Second, it more clearly demonstrates the potential for risk-based analysis of outputs to
improve the quality of decisions.

The idealized case study presented in this chapter is, to a certain extent, hypothetical.  For example, the
original analysis did not allow DO to vary either in the with or without project future conditions.  It does vary
here.  The extent of that variation, which will be described later in the chapter, has been the invention of the
analysis presented here but it is based on the factual work of other Federal agencies.  This is a realistic analysis.
Nothing will be done in this chapter that could not have readily been done in the original analysis.  Although the
analysis is realistic, it is not real.  The numbers presented here may not always reflect the actual conditions at the
case study site.  The chapter proceeds by applying the procedures presented in the last chapter.

APPLYING STEP 1:  SELECT ANALYTICAL FRAMEWORK 

How will you evaluate the impacts of your alternative plans?  Every study requires an analytical
framework.  Knowledgeable District personnel decided that the environmental outputs of the Brown Sugar River
and Tentshow Dam Project could best be analyzed via a HEP analysis.  It is a widely accepted and cost-effective
method that is well understood by U.S. Fish and Wildlife Service and Corps personnel.

Simpler models might have identified DO in mg/l as the output of this project.  Such an analysis would,
however, have failed to link the changes in DO to the improvements in the fortunes of the trout and other fisheries
that were the planning objectives of the study.  More complex models might have relied on a community or
ecosystem model.  That would have been beyond the financial reach of the study budget.  Thus, the choice of a
HEP analysis was reasonable based on the study budget and schedule, the lack of controversy in this study, and
the involvement and preferences of the U.S. Fish and Wildlife Service and state resource agencies.
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At this point, it is essential to have a detailed and specific knowledge of HEP analysis.  Planners who
have used the general method before should have sufficient command of the overall approach.  Nonetheless, it
is necessary to read and become familiar with the HSI models to be used or to carefully plan the construction of
new HSI models.  Analysts using the method for the first time would be well advised to seek training in the use
of the method directly from U.S. Fish and Wildlife Service or from experienced analysts.

Selecting indicator species for the HEP analysis is an important dimension of this first step in preparing
for a risk analysis.  District and U.S. Fish and Wildlife Service personnel felt that using habitat evaluations for
a suite of fisheries that included channel catfish, largemouth bass, and rainbow trout would best represent
improvements to the ecosystem.  In this case, the U.S. Fish and Wildlife Service HSI models for these species
would be used and field-modified as necessary.  Habitat units for each of these species will be estimated and
summed for the most likely future conditions without a project and compared to the most likely conditions with
a project for each of eight alternatives.   In this idealized case study we limit ourselves to two alternatives to avoid
drowning the reader in details in what is intended to be a simple demonstration of techniques.  Changes in habitat
units will be used as the primary measure of the environmental outputs of the project.  

In other studies it would be entirely permissible to have selected another analytical framework,  another
kind of habitat evaluation model, or a different suite of indicator species.  In addition, it may well have been
appropriate to address a broader array of uncertainties.  Nothing in these procedures should be construed as to
limit those choices.  These procedures are designed to standardize the approach to incorporating risk analysis into
the habitat evaluation task while maintaining sufficient flexibility to accommodate a wide variety of approaches
to that task.

APPLYING STEP 2:  TYPES AND SOURCES OF UNCERTAINTY

The purpose of this step is to identify broad categories of uncertainty that can arise in your specific
analysis.  Our understanding of the ecosystem with which we are dealing, the structure of our habitat evaluation
models, values for the habitat variables, costs, project performance, the area affected by the project, and the
duration of project impacts are, in broad terms, the types of things that are uncertain in this case study.

Some uncertainty is epistemic.  We do not really know what an ideal rainbow trout habitat is.  We’re not
really sure if all the important variables are among our set of habitat variables.  Nor are we sure how they
interrelate to provide the trout’s life requisites.   The manner in which life requisite measures are combined to19

develop a habitat suitability index is also a matter of some speculation.
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If we can get beyond these questions, there is some question about how well this labyrinth-like weir is
going to function with a variety of flows.  How will it actually affect DO and temperature?  How long (temporal)
and how far (spatial) will those effects extend?  The bottom line is there is a great deal of knowledge uncertainty
attending this analysis and any other.  There is some uncertainty as to whether our models yield a realistic or even
a reasonable depiction of a very complex reality.  There is little certain knowledge about the future that we can
bring to the study.

It is important to consider these uncertainties early in the analysis.  Whenever possible, they should be
addressed.  If there are other models available, consider using the better one.  If you don’t know which model is
better, consider using one to check the other.  Perhaps it will be appropriate to “field fabricate” some changes to
the model to make it more realistic.  In most cases, however, there will be little or no options, i.e., little time or
money, to do anything about knowledge and model uncertainty.  These are usually more appropriate targets for
research projects rather than for planning studies.  Thus, whatever uncertainties reside in the structure of the
chosen HSI models and HEP analysis are simply accepted.  The uncertainty about the future, without and with
a project can, however, be addressed by our estimation of habitat variable values. 

Uncertain quantities are the most common uncertainties in this and most ecosystem restoration studies.
We don’t have enough data to be sure of much of anything.  There are no data for most HSI model habitat
variables at the outset of the study.  There may be some water quality data, but there is rarely as much as we
would like to have.  There is considerable uncertainty about project performance as well as project costs.
Virtually every bit of information we will use in this analysis is less than perfect.  Nonetheless, some of it is quite
good by the standards of an uncertain world.  In this case study we will concentrate on the uncertainty in the
habitat variables in our risk-based analysis.  

It was both infeasible and inappropriate to address our knowledge and model uncertainties in the case
study. Table 8 summarizes the types of uncertainty of most interest in this analysis.  A table like this should
include all identifiable types of uncertainty whether they can or will be addressed or not.  It provides a clear
indication of the types of uncertainties that will be addressed in the risk analysis.  This table uses the taxonomy
developed by Morgan and Henrion presented earlier in the manual.   We suggest a table like this become part20

of the preparation for any risk analysis.

Although project costs and hydrology are uncertain in this study they will not be addressed in this
analysis.  This is a demonstration project with a narrow focus.  In an actual study, it would be important to
identify those things that are uncertain that are not going to be addressed along with the reason for not addressing
the uncertainty.  The reasons will often be a lack of data or study budget.  At times, it could be not knowing how
to address the uncertainty.  Honesty in assessing the uncertainties present is to be prized above all other virtues.
Tables like Table 8 aid the transparency of a good risk analysis.

The next step at this early point in the analysis is to identify the sources of uncertainty for each of the
types of uncertainty to be addressed.  That is, the analysts need to say why the values of habitat variables are
uncertain, and why estimates of habitat units are uncertain and so on.  Table 9 does this. 
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Table 8:  Types of Uncertainty in Idealized Case Study

Item Type of Quantity

Affected Area Model Domain Parameter 

Habitat Variables Without Project Empirical Quantities

Habitat Variables With Project Empirical Quantities

Hydrology Chance Variable

Project Costs Empirical Quantities

Life Requisites Outcome Criterion

Habitat Suitability Index Outcome Criterion

Habitat Units Outcome Criterion

Table 9: Sources of Uncertainty in Idealized Case Study

Item Type of Uncertainty Source of Uncertainty

Affected Area Empirical Quantity Approximation

Habitat Variables Without Project Empirical Quantities Statistical Variation, Subjective Judgement,
Linguistic Imprecision, Variability,  Disagreement

Habitat Variables With Project Empirical Quantities Statistical Variation, Subjective Judgement,
Linguistic Imprecision, Variability, Disagreement

Hydrology Chance Variable Variability, Inherent Randomness

Project Costs Empirical Quantities Subjective Judgment, Variability, Disagreement,
Approximation

Life Requisites Outcome Criterion Result of calculation with uncertain values

Habitat Suitability Index Outcome Criterion Result of calculation with uncertain values

Habitat Units Outcome Criterion Result of calculation with uncertain values

We know measures of habitat variables will be uncertain.  This can be due to errors in measurement,
variability, reliance on heuristics in making subjective judgments of variable values, and disagreement among
the analysts over what a value is.  These errors are possible in measuring existing conditions, so they are even
more likely in describing future conditions without or with a project.  There can also be misunderstanding and
difference of opinion over what constitutes a pool, a riffle, shade and so on.  You do not address each type of
uncertainty in the same way.
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Once the types of uncertainty are identified, the analysts can identify the types of uncertainty to which
they can and will address themselves.  In this example, we will ignore the hydrologic and cost uncertainties
because they do not figure prominently in the focus of this manual.  Some hydrologic uncertainty will be
addressed, however, to the extent that several habitat variables are hydrologic in nature.

At this point, a general approach to addressing the uncertainty can be planned.  For example, the affected
area is uncertain because we must approximate the area affected using maps that are somewhat dated.  We’ll
address this uncertainty by using a distribution of values to describe the potentially affected area.  Table 10
summarizes the approaches appropriate for this uncertainty analysis.  Knowing the options for addressing the
uncertainty, even if a final decision about how to proceed has not yet been made, helps the analysts understand
what kinds of data they will need and in what formats.

Table 10:  Proposed Approaches to Uncertainty

Item Source of Uncertainty Handling of Uncertainty

Affected Area Approximation Parametric Variation , Interval21

Estimation, Distribution

Habitat Variables Without Project Linguistic Imprecision Education

Statistical Variation, Subjective Parametric Variation, Interval
Judgement, Variability,  Disagreement Estimation, Distribution

Habitat Variables With Project Linguistic Imprecision Education

Statistical Variation, Subjective Parametric Variation, Interval
Judgement, Variability,  Disagreement Estimation, Distribution

Hydrology Variability, Inherent Randomness Will Not Be Addressed

Project Costs Subjective Judgment, Variability, Will Not Be Addressed
Disagreement, Approximation

Life Requisites Result of Calculation with Uncertain Parametric Variation,
Values Distribution

Habitat Suitability Index Result of Calculation with Uncertain Parametric Variation,
Values Distribution

Habitat Units Result of Calculation with Uncertain Parametric Variation,
Values Distribution
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The tables presented in this section are offered as examples of simple tools for thinking about and
organizing the types and sources of uncertainty in your analysis. They also make effective summaries for the
project report.

APPLYING STEP 3:  IDENTIFYING POTENTIAL KEY VARIABLES 

Careful completion of the first two steps makes this step much easier.  Understanding the models you
are using and identifying the existing types and sources of uncertainty will go a long way toward helping you
identify the potentially key variables.  Because we are using U.S. Fish and Wildlife Service HSI models in a HEP
analysis, the values of habitat variables are critical to the estimation of habitat units without a project and habitat
units with a project for a variety of planning alternatives.  There are up to 18 habitat variables for the catfish, 15
for the bass, and up to 18 for the trout.  There is some overlap among the variables.  Not all of the variables are
equally important.  This section begins by reconsidering three important questions in determining what is
potentially important.  It concludes by offering a generic process for identifying potentially important variables
in a wider variety of contexts.

WHAT DO PEOPLE THINK IS IMPORTANT?

The way to start to find out what variables are important is to find out what people think.  Ask your non-
Federal partner what they think is important.   Ask the resource agency personnel.  Ask your study team members.
Ask the public.  Read the professional literature.  Review any and all related reports.  If you do these things and
some things come up over and over, chances are good they’re important.  When a lot of people think something
is important, it usually is.  Once you’ve identified something people think is important, make sure it’s on your
list of uncertain variables.

In the current case, there were a number of reports that identified low DO as the major problem affecting
the trout fishery.  Everyone associated with the project agreed.  Clearly, DO is a key variable.  The existing and
future levels of DO are all less than certain.  Minimum flow was a second variable that some, but not all, of these
same sources identified as important.  Thus, DO and minimum flow are potentially important variables based
on the criterion of what others think.

Those using HEP analysis and the existing HSI models have a tremendous resource in the form of the
text in the model descriptions and the literature that is referenced within the HSI model.  These are good
references for ascertaining key variables identified in the professional literature.  Asking people and reading are
good ways to start, but they are just a start. 

LOOK AT THE STRUCTURE OF THE MODEL(S)

The structure of any model reflects the extent to which a physical system or phenomenon is understood.
HEP analysis is aided by the fact that the structure of the model is made very explicit.  Understanding the
structure of the model is essential.  No analyst should rely on a model that is a black box. It is impossible to
inform decision-makers about what is and is not known with certainty about the choices before them when you
do not understand how the tools work.
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Rainbow Trout Habitat Variables

V : average maximum water temperature during the warmest period of the year1

V : average maximum water temperature during embryo development2

V : average minimum dissolved oxygen during the late growing season low water period3

V : average thalweg depth during the late growing season low water period4

V : average velocity over spawning areas5

V : percent instream cover during the late growing season low water period6

V : average size of substrate in spawning areas7

V : percent substrate size class 8

V : predominant substrate type in riffle-run areas9

V : percent pools during late growing season low water period10

V : average percent vegetational ground cover and canopy closure along the streambank11

V : average percent rooted vegetation and stable rocky ground cover along stream bank12

V : annual maximal or minimal pH13

V : average annual base flow regime during the late summer or winter low flow period as a 14

        percentage of  the average annual daily flow
V : pool class rating during the late growing season low flow period15

V : percent fines in riffle-run and spawning areas during average summer flows16

V : percent of stream area shaded between 1000 and 1400 hours17

V : percent average daily flow 18

For simplicity, we’ll continue to work with the rainbow trout HSI model summarized in Figures 3 and
4.  The habitat variable definitions are summarized in the following sidebar.  Later, the potential major
uncertainties in all three models will be reported.  In an HSI model, it’s probably reasonable to assume that all
habitat variables are sources of uncertainty in the estimation of habitat units.  To understand which of these are
key uncertainties, we begin at the end of the model, with the HSI calculation.

The field-adapted HSI calculation used by the U.S. Fish and Wildlife Service for the rainbow trout
follows:

(14)    HSI = (C  x C )A  O
.5

where C  is the life requisite for adult trout and C  is the life requisite value for other factors.  Because the termsA         O

in parenthesis are multiplicative, if either of them is 0 the entire HSI is 0.  Because the HSI requires the square
root of this product we see that if the two life requisites are equal, the HSI will equal the life requisite value. For
any other situation, the HSI will be less than higher life requisite value.  Thus, the constraining factor in this
equation is the lower of the two life requisite values.  Let’s look at each of them in turn.



(15) CO '
(V9 x V16)

1/2%V11

2
x (V1 x V3 x V12 x V13 x V14)

1/5
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The life requisite based on other factors is defined as follows:

where V  is average maximum temperature, V  is average minimum DO, V  is predominant substrate type, V1     3     9     11

is average percent ground cover, V  is average percent rooted vegetation, V  is pH, V  is average annual base12       13    14

flow as a percentage of average annual dail flow, and V  is percent fines in riffle-runs.  Equation (15) consists16

of two larger  multiplicative terms, the “fraction” and the “product.”  If either of them equals zero, the C  willO

equal zero as will the HSI.

If any one of the variables in the fraction is zero, the factor will remain non-zero.  If any one of the
product factor variables is zero, the entire life requisite will equal zero.  For the moment then, V , V , V , V ,1  3  12  13

and V are potentially important variables.   If any one of them is zero, C  is zero and the HSI is zero.  Once14               O

some field data have been collected we will be in a position to say which, if any, of these variables is actually a
key variable.

The life requisite value C  is rather complex.  It begins with a pair of constraints and a choice.  TheA

constraint says if V  or (V  x V )  is less than or equal to 0.4 then C  is the lowest of these two values.  V  is4  10  15          A         4
.5

average thalweg depth, V  is percent pools, and V  is the pool class rating.  If the SI for either of these is zero,10     15

the C  and HSI both will be zero.  These are constraining variables in the model.  In the case study neither ofA

these values is near zero.

If neither V  nor (V  x V )  is less than or equal to 0.4, there is another set of conditions that guides4  10  15
.5

the estimation of C .  If V  is greater than (V  x V ) , you are to use the following equation:A    6    10  15
.5

(16)    C  = (V  x V  x (V  x V ) )A  4  6  10   15
.5 (1/3)

where V  is percent instream cover.  If V  is less than or equal to  (V  x V )  use:6       6        10  15
.5

(17)    C  = (V  x (V  x V ) )A  4  10   15
.5 .5

In either of these equations if  any one of the variables has an SI of zero, C  and HSI are likewise zero.A

Summarizing our results, if any one of nine habitat variables has an SI of zero it will result in an HSI of
zero.  On the contrary, if any habitat variable has a large SI value this will not lead, a priori, to a large HSI.  The
impact of the largest non-zero SI is always dampened by the other variable SI’s.  The lowest value always
constrains a multiplicative function.  Any HEP analysis or similarly structured analysis can be analyzed in this
mathematical fashion to identify potentially major uncertainties.  A corollary to the “looking for zero” strategy
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is to pay particular attention to those variables that yield the lowest SI’s, they are often (but not always) variables
that constrain the ultimate size of the HSI.

This technique identifies the potential major uncertainties based on model structure.  In a HEP analysis,
constraining variables are potentially major sources of uncertainty.  Any habitat variable that has the potential
by itself to result in an HSI of zero is potentially important.  It is not yet possible to see which, if any, of these
potentially major uncertainties will in fact be a major cause of uncertainty until some information has been
collected.  This is a subject to which we will return.

WHICH VARIABLES CAN YOU AFFECT?

Another way to determine what is a potentially major variable is to look at the habitat variables over
which you can exert some measure of control with the alternative plans under consideration.  For example, the
common wisdom on the alternatives under consideration for this case study suggests that DO and water
temperature are the only variables that will be affected by the alternatives.  The weir will aerate the water and the
various flow options will lower water temperature.  These, then, are the potentially important uncertain variables
based on this criteria.

IMPORTANT VARIABLES

You can’t be sure which uncertainties are going to be important until you begin to collect some data.
For example, once the percentage of ground cover exceeds 75 percent it is ideal for trout.  The actual percent of
ground cover is estimated to be between 95 and 100 percent.  The variation over this range has absolutely no
impact on the SI or any subsequent calculations.  Although variable V  is potentially important based on its14

mathematical ability to “zero” the HSI, in this case it can be safely eliminated from consideration as an uncertain
variable.  It is, in fact, not going to be critical in the calculation of the HSI.

Until some data have been collected, the best one can do is to be prepared to scrutinize those variables
that might be critical to the analysis.  Any variable that meets one of the above criteria could be important.
Variables that meet all three of the criteria warrant special scrutiny.  Whenever a variable falls into the third
category of those that can be affected by a plan it bears special attention.  When the third and one or more criteria
are met, these are also important variables. 

The results of the analysis presented above is summarized in Table 11.  Tables like this can be an
effective means of documenting your thought process.  Water temperature and DO are potentially the two most
important variables in this analysis.

ENHANCED KEY VARIABLE IDENTIFICATION:  CRITERIA-BASED RANKING

Building on the discussion in the preceding sections, this section offers a generic process to assist
analysts in the identification of potentially key variables in a risk analysis.  The method, called criteria-based
ranking, is useful when the important variables aren’t obvious or there are so many of them they cannot all be
addressed.  The value of the technique is that it allows the analyst to identify a small set of tailor-made criteria
that can be used to organize information and place potentially important uncertainties in some order of priority.
The method is described in the seven steps that follow.  
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Table 11: Potentially Important Habitat Variables

Habitat Variable People Say Model Structure Can Affect

V : Water temperature Yes Yes Yes1

V : DO Yes Yes Yes3

V : Thalweg depth No Yes No4

V : % instream cover No Yes No6

V : % pools No Yes No10

V : Rooted vegetation No Yes No12

V : pH No Yes No13

V : Base flow No Yes No14

V : Pool class No Yes No15

1.  Criteria

The first step is to identify the criteria you will use to rank your potentially uncertain variables.  The
criteria can vary from study to study or from task to task within a study.  Criteria should be designed to reflect
the most important aspects of evaluating risk against a defined scenario in a given situation.  Some potential
criteria have been identified in the preceding sections.  Some sample criteria for selecting habitat variables could
be:

1. Can it cause the HSI to go to zero?
2. Does it have an SI of zero?
3. Can it be directly affected by alternative plans?
4. Can it be indirectly affected by alternative plans?
5. Does anyone say it is important?
6. Can the variable impact any charismatic species?
7. Can the variable impact any threatened or endangered species?

Criteria-based ranking works best when the number of criteria used is limited.  Generally, it would be
desirable to keep the number of criteria to a maximum of three or four for this screening technique to be effective.

Once a criteria is chosen, a variable number of scenarios (usually three) are defined for each criterion.
The criteria as well as the scenario descriptions are site- and study-specific.  They are based on the professional
opinions of the study analysts.  Hence, they are subjective by nature.  An example of how this might be done
using the same three criteria from the previous illustration follows:
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Criterion 1. Habitat variable can cause HSI to go to zero.

High.  If SI for variable is zero, HSI will be zero.
Medium.  If SI for variable is zero, HSI will be low.
Low.  HSI is determined by other variables.

Criterion 2.  Others say the habitat variable is important.

High.  There are published studies identifying the variable as important and/or the non-
Federal partner says the variable is important.
Medium.  Stakeholders say the variable is important.
Low.  There are no published reports indicating the importance of the variables and no
stakeholders have indicated it to be important.

Criterion 3.  Alternative plans can affect the habitat variable.

High.  One or more potential alternative plans directly affects the variable.
Medium.  One or more potential alternative plans indirectly affects the variable.
Low.  The variable is not affected by a potential alternative plan.

Ideally, the scenarios would be inclusive of all possible states of the world.  This will rarely be feasible.
To do so would require far too many scenarios.  Bearing in mind this is a screening tool, it is usually more
practical to define three relatively general scenarios and then to fit each case into one of these scenarios.  If it
appears that doing so could result in egregious error, then add another scenario.

It is easiest if all the criteria are considered of equal importance.  If that is neither practical nor realistic,
then the weighting scheme should be defined at this step.  For example, we might say Criterion 1 is twice as
important as Criterion 2 and three times as important as Criterion 3.  It will be common for analysts to disagree
at this and future steps of the process.  When that happens rules for resolving disagreements will need to be
developed.

2.  Ratings

In this step, the study team critically evaluates the available information and uses subjective expert
judgment to rate each variable.  The rating means a most likely scenario is assigned to each habitat variable.  For
example, in this case study, DO and minimum stream flow/temperature would be assigned to the High risk
scenario under Criterion 2 because of previous reports by other Federal agencies and the position of the non-
Federal partner.  A sample rating, using only those variables used in the field-adapted version of the trout model,
is shown in Table 12.

3.  Possible Combinations

In this step all the possible combinations of scenario ratings for your criteria are listed in descending
order of possible risk.  This requires analysts to pay special attention when the criteria are not weighed equally.
A sample listing of all possible combinations with equally weighted criteria is shown in Table 13.
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Table 12:  Sample Criteria-Based Ranking for Rainbow Trout

Habitat Variable Criteria 1 Criteria 2 Criteria 3

V  Maximum Temperature H H H1

V  Minimum DO H H H3

V  Thalweg Depth H L L4

V  Percent Cover H L L6

V  Substrate Class M L L9

V  Percent Pools H L L10

V  Percent Riparian Vegetation M L L11

V  Percent Ground Cover H L L12

V  pH H L M13

V  Average Annual Base Flow H M H14

V  Pool Class H L L15

V  Percent Fines M L L16

Table 13:  Possible Combinations for Rainbow Trout

HHH Greatest Risk

HHM, HMH, MHH High Risk

HHL, HLH, LHH, HMM, MMH, MHM Above Average Risk

HLM, MHL, HML, LMH, MLH, MMM, LHM Moderate Risk

HLL, LHL, LLH, MML, LMM, MLM Below Average Risk

MLL, LML, LLM Low Risk

LLL Least Risk

The table reveals the subjectivity of the method.  It is the analysts’ judgment that determines what
combinations are considered equivalent.  Thus, another study, another set of criteria, or different scenario
definitions for the criteria could result in an entirely different table of possible combination groupings.  For
example, if Criterion 1 is considered far more important than any other criterion we might include any
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Letters or Numbers?

Perhaps it has occurred to you that if we assign H
= 3, M = 2, and L = 1 in Table 14, the ranking process
would be much more transparent.  Indeed it would and you
might want to use numerical weights.  The caveat we offer
and the only reason for not doing so here is that numerical
weights can tend to imply a precision and accuracy to your
rankings that does not exist.  

Ratings are often subjectively assigned to a
variable.  Distinctions can be subtle and even arbitrary.
Once these judgments are converted to numbers, however,
we have a tendency to think a 9 is 1.5 times a 6.  When
working with subjective ranking schemes like this, that is not
always true.  So, if you’re more comfortable working with
numbers, feel free to use them.  Just be aware these are at
best ordinal rankings and no other mathematical qualities
should be ascribed to their use.

combination with an H in the first position as a
High Risk factor.  The risk characterizations
offered here are also entirely subjective.  It is
important to remember this is a screening tool, not
rocket science.   The value of the technique is that
it provides the analysts with an organized and
consistent approach for whittling a long list of
potentially important variables down to those on
which they will focus their attention.

The criteria and scenarios developed in
Step 1 make the analysts’ subjective judgments
transparent to others.  If anyone disagrees with the
criteria or scenarios, they are free to modify the
technique and apply it themselves.

4.  Rank 

The habitat variables are ranked according
to descending relative risk in subjective clusters.

This combines steps 2 and 3.  The rankings for the rainbow trout are provided in Table 14.

Table 14:  Criteria-Based Ranking for Rainbow Trout

Habitat Variable Rating Ranking

V , V HHH Greatest Risk1  3

V HMH High Risk14

V HLM Moderate Risk13

V , V , V , V , V HLL Below Average Risk4  6  10  12  15

V , V , V MLL Low Risk9  11  16

There is uncertainty attending estimates of each variable.  The criteria-based ranking procedure has
enabled us to define our own criteria and scenarios and to separate the 12 different habitat variables used into five
subjective groupings.  The analysts must now decide which, if any, of these groupings they should address.  Any
variable that presents a “high risk” or greater is considered a potentially important source of uncertainty in this
study.  That means temperature (V ), DO (V ), and flow (V ) warrant close scrutiny.   Less emphasis would be1   3    14

placed on the other variables.  A similar process would be followed for each HSI model used.
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5.  Add Criteria

In this step, analysts use their expert judgment to assess the accuracy of the risk ranking that resulted
from the initial criteria.  For argument’s sake suppose the analysts all thought that pH (V ) should have come13

out as the single riskiest factor in this analysis.  It came out as fourth.  It would be very difficult to justify
considering focusing solely on pH based on this analysis.  That would require leapfrogging over riskier variables.

If the analysts believe a variable is ranked too low that would presumably be because the original criteria
did not address some dimension of importance.  In that case, it may be appropriate to add another criterion.  The
new criterion should address that missing dimension.  It’s perfectly permissible to add a criterion that would
advance pH up the risk ranking as long as you describe what you did and why you did it.

6.  New Combined Rating

In this step, the habitat variables are rated again.  This time against four criteria, the original three and
the new one.  The new combined ratings, from HHHH to LLLL, would presumably result in a change in the
ranking of the potential importance of the habitat variable, otherwise there would have been little reason to add
a criterion.

7.  New Ranking

In order to provide a new ranking, a new set of possible combinations must first be developed.  When
all the combinations of the three scenarios for four criteria are ranked, it becomes clear why this process works
best for a limited number of criteria.  There is no reason why a large number of criteria could not be used, if the
technique is built into a spreadsheet environment or is used with some multi-criteria decision analysis software,
like for example Expert Choice.   Criteria-based ranking is presented here as a simple tool that can be done with22

pencil, paper, and careful thought process.  Once the new table of possible combinations is created, the habitat
variables are ranked again as was done in Table 14. 

APPLYING STEP 4:  DESIGN RISK ANALYSIS

The first task in this step is to assess the importance of your risk analysis.  It is now time to think
carefully about how important the risk analysis is.    If the problems and planning objectives are simple, well
defined, and few; if the impacts of the problems and their potential solutions are relatively confined in time and
space; if data are available and reliable; if there is little or no controversy attending the study; and, if the budget
is small and the schedule is tight, the risk analysis will look quite different than it might under other
circumstances.  Complex problems, great uncertainty, large impact areas, controversy, large budgets and ample
time frames dictate more involved risk analyses.
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The importance of the study and the uncertainty that attends the decision-making throughout it will
dictate the extent of the risk analysis.  A very simple sensitivity analysis based on an interval estimate of a single
key variable may suffice in a short, sparsely funded Section 1135 study.  For example, in the current case, a
minimum change in habitat units could be based on the highest possible DO without a project and the lowest
possible DO with a project.  The maximum change in habitat units scenario would be based on the lowest
possible DO without a project and the highest possible DO with a project.  These two scenarios, combined with
the most likely change in habitat units estimate, might well comprise an adequate risk analysis. 

In addition to assessing the importance of a risk-based  analysis of environmental outputs for your study,
it is appropriate to assess the importance of that analysis within the study.  Although this manual has focused on
risk-based analysis of the outputs of ecosystem restoration projects, there are many other sources of uncertainty
in a study.  Problem identification can be a major source of uncertainty.  Hydrology and hydraulics can be another
common source of uncertainty.  Cost estimating is another. The existing condition may be very uncertain in one
HEP analysis and not in another.  Without project conditions may be less certain than with project conditions or
vice versa.  The point is that analysts should not treat all uncertainty as equally uncertain or equally important
to the decision process.  When project outputs are a major uncertainty relative to other study uncertainties they
must be investigated more thoroughly.

There will only be so much time and money available to do any risk analysis in a given study.  So, once
the overall importance of risk analysis has been determined it is important to focus the analysis on certain tasks
within the study.  The resource constraints of the study are important determinants of the risk analysis.  If there
is neither time nor money to field truth environmental data through careful sampling programs, this will have a
significant impact on the design of the risk analysis regardless of its importance or focus.

The next steps are straightforward.  First, the analysts review the available risk analysis tools.  The last
chapter reviewed a number of rather generic tools that can be applied in most studies.  In other cases, especially
for large, controversial studies, there may be structural models available for the consideration of risk analysis.
Following a careful review of the available tools and in light of the importance of the analysis and the study’s
resource constraints, the analysts select the tools they are going to use to address the major uncertainties.

In the current case, $9,000 was allocated for the HEP analysis.  Based on the preceding steps of this
analysis, interval estimation of the potentially important habitat variables appears to be a very reasonable
approach to the data collection.  The field data would then be used as parameters to represent the key uncertainties
with simple distributions in a Monte Carlo simulation.  Armed with this simple risk analysis design and
knowledgeable of the key variables, their data collection task could be approached in a systematic fashion that
ensures the desired analysis can be completed.  The basic purpose of this step is quite simple: think about how
you are likely to address the uncertainty in your analysis so you can collect the data you’ll need to address it in
an appropriate fashion.

Thus, the risk analysis design for the rainbow trout example we have been following would be to collect
data on water temperature, DO, and flow so a Monte Carlo process could be used in a simulation model.  This
will require data sufficient for defining a probability distribution.  That could mean collecting data and fitting a
distribution to it or defining an interval as described in the previous chapter.  The same data could be used to
define scenarios for a sensitivity analysis, if so desired.

APPLYING STEP 5:  COLLECT DATA
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In step three you identify the variables, i.e., specific kinds of data, that are the focus of your risk analysis.
In step four you identify the basic format in which the data are to be collected.  Now it is time to collect the data.

ADDRESS LANGUAGE ISSUES

Make sure everyone understands the data collection approach you are using and the language required
to use it.  We have often repeated the need to make sure everyone understands the same thing when they use
familiar words.  The potential uncertainty that can creep into your analysis when words are not commonly
understood can be substantial.  Worse, it is all but undetectable.

DESIGN DATA COLLECTION METHODS

Before you go into the field be sure to design your methods for collecting data.  If there is budget and
justification for a detailed sample design, plan it carefully in advance.  See the forthcoming (1997)  IWR reports
on sampling and survey design for additional details and further references.  If you are unable to obtain sample
data, count on greater uncertainty in your data collection.  This means you should consider problems that might
arise in collecting, aggregating, and using the data before you begin data collection.  Helping people to prepare
for making subjective judgments, using interval estimates (subjective, objective, hybrid), defining concepts like
minimum, most likely (mode or mean), and maximum are practical, important issues.  Developing ground rules
for resolving disagreements and differences of opinion are also important steps.

Devote some time to field verification of your data before you leave the data collection site.  You might
consider multiple measurements of a variable, perhaps by different people.  Simple checks to make sure all data
entries are completed and comparisons or brief discussions of results among data collectors can uncover potential
problems before their correction entails a costly return to data collection sites.

If you are obtaining primary data, use some sort of interval estimation, whether statistical or expert
opinion.  If you’re using secondary data, try to get the raw data from which the summaries were generated.  Make
an interval estimate of variable values your default measurement technique.  If necessary, generate a subjective
interval.

DATA FOR THIS ANALYSIS

If we were strictly following the procedures laid out here, we would treat information about water
temperature, DO, and flow as uncertain and important to this analysis.  That would be a cost-effective approach
to a real risk-based analysis of environmental outputs resulting form the Tentshow Dam project.  Because this
is a demonstration project, every habitat variable in the three HSI models used. There would ordinarily be no
reason to do that.  However, if the techniques demonstrated here are viable for many variables, they are certainly
viable for fewer variables.  

The procedures presented here were devised largely as a result of the experience gained from the case
study.  Hence, the data that we would have liked to have had were not available to us as a result of the field work.
Consequently, we relied on different methods to define the uncertainty in our variables.  Although these methods
may not be ideal, they are realistic alternatives in a situation such as this in which the data collection is complete
and a risk analysis is desirable.  The sources of data for the case study include  data from the field investigation;



Risk and Uncertainty Analysis Procedures
for the Evaluation of Environmental Outputs

85

data from the reports of other government agencies; and subjective estimates of variable values.  The data used
to define the uncertainty in the habitat variables are presented at Appendix 2.

APPLYING STEP 6:  IDENTIFY THE IMPORTANT UNCERTAINTIES

In step three, you identify the potential key uncertainties.  This can be done in a variety of ways.  We have
suggested relying primarily on an understanding of the models and criteria-based ranking of the risk potential of
different variables.  These techniques require analyzing the mathematical structure of habitat evaluation models
and considering the study-specific criteria that might elevate a variable to potential importance.

The key word in that screening process was “potential.”  You want to know before you begin your
analysis what might be important to your decision process.  After the necessary data have been collected, it is
possible to look at the values of those potentially important uncertain variables and determine which of them are
actually important.  This is the step in the analysis where we determine whether the potential has been realized.

CRITICAL RANGES

Step three resulted in the identification of water temperature, DO, and flow as variables of most interest
in our risk-based analysis.  At that point in the analysis, the most we could do was say the uncertainty attending
these variables is potentially of key importance.  After some data are collected we’d like to know if any of the
potentially important variables are actually important in this study.  So, what we’d like to know is if
measurements of any of our habitat variables fall within critical ranges for an indicator species.

A critical range for a HEP analysis can be defined as a habitat variable measurement that would result
in an SI of zero for a potentially important variable (See Figures 4, 5, and 13).  For example, water temperatures
less than 0EC or more than 25EC result in an SI of zero.  DO values less than 5 mg/l and lack of flow can also
result in SIs of zero.  Hence, if we quantify the uncertainty for these three variables and they include any of these
critical ranges, we know we need to pay careful attention to these variables.

Using a single without-project condition reach for the rainbow trout model to illustrate this point, let’s
consider the interval estimates of Table 15.  The uncertainty surrounding temperature and DO could include the
critical values.  The uncertainty surrounding flow does not include the critical 0 value.  Hence, we would conclude
that of the three potentially important sources of uncertainty only two, temperature and DO, are actually
important.
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Steps for Quantifying Uncertainty of Key
Variables

1.  Identify key variables
2.  Identify types and sources of uncertainty 
3.  Determine if plans can affect key variables
4.  Quantify uncertainty 
5.  Rate uncertainty
6.  Define scenarios or distributions
7.  Identify steps to reduce uncertainty

Table 15:  Important Uncertain Habitat Variables

Habitat Variable Minimum Most Likely Maximum Important Variable
Value Value Value in Fact?

V :  Water temperature 21.5 23.9 26.3 Yes1

V :  DO 0.4 0.5 0.7 Yes3

V :  Flow 1 2 6 No14

The procedure described in the steps up to this point represent a winnowing process.  An examination
of the models, consideration of what people think, and what can be done about the problems identified a list of
potentially important variables from the comprehensive list of habitat variables.  Once data have been collected
this list can be further narrowed to a short list of variables that will be examined carefully in the risk analysis.
In essence, the work of this step is to verify or overturn the judgments of step two now that you have some data.

DESCRIBE THE UNCERTAINTY

Now that the analysis is moving from the general to the specific it is time to begin to quantify the
uncertainty for use in the next step.  Doing this requires assimilating information from the previous steps.

We begin by identifying the variables that have
survived the transition from potential importance to real
importance.  Looking at the 13 variables identified for the
rainbow trout model, we found two that are actually
important sources of uncertainty.  They are DO and water
temperature.  The other variables did not become actual
concerns because the interval estimate values of these
variables did not fall into the critical range of values that
would result in a suitability index of zero, subsequently
causing the HSI to equal zero.  A similar analysis was
done for each HSI model and it’s set of habitat variable
values.  Those results are not reproduced here in order to
keep the discussion brief.  Suffice it to say, water temperature and DO are key variables for all three indicator
species.  

Once the set of important variables is identified, the relevant uncertainty can be identified in a series of
steps such as those that follow.  First, identify the type and source of uncertainty.  In this instance we have
quantity uncertainty in our DO and temperature.  The source of the uncertainty is primarily a result of the
approximate measurements that have been obtained from other agency reports in lieu of a statistically significant
sample design.

Second, determine whether the key uncertain variables can be affected by our alternative plans.  In this
case, the weir does aerate the water released from the dam increasing the DO levels.  The primary effect of
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minimum base flow alternatives is to decrease the temperature of the water.  Thus, we conclude we can affect the
key variables in this case.  That will not always be true.

Third, we need to quantify the uncertainty surrounding our key variables.  This is done initially with
interval estimates of DO and temperature for the rainbow trout at four sites.   Fourth, the level of certainty about
our data should be expressed.  Decision-makers have a right to know the status of the information used in the
various analyses.  

We think rating the certainty of all significant data used in a study is a good idea.  This is not a practice
that should be restricted to information used in the risk analysis.  Simply rating the quality of the data would
provide a valuable new dimension of understanding for decision-makers and readers of study reports alike. There
are many ways to do this.  We use the simple code presented in Table 16.  The first several steps are summarized
in Table 17.

Table 16:  Uncertainty Ratings

Rating Abbreviation Definition

Very Certain VC This is as certain as I am going to get.

Reasonably Certain RC Reasonably certain

Moderately Certain MC More certain than uncertain

Moderately Uncertain MU More uncertain than certain

Reasonably Uncertain RU Reasonably uncertain

Very Uncertain VU A guess, little or no evidence of the real value

Table 17 provides a rather succinct summary of the major uncertainties encountered in this analysis.  A
similar table can be prepared for every with project condition and for each indicator species as well.  This table
provides the basis for the next step in summarizing the uncertainty surrounding our key variables, i.e.  specifying
the distribution that will be used to quantify the uncertainty.   This step may look different if the risk analysis
design stopped with a sensitivity analysis.  In that case, this step would require the analyst to identify those
parameter values to be used to define and differentiate the various scenarios (e.g., worst case, best case) to be
investigated in the sensitivity analysis. 
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Table 17:  Sample Quantification of Rainbow Trout Uncertainty for Without Condition

Habitat Type of Source of Can we Uncertainty Minimum Most Maximum
Variable Uncertainty Uncertainty affect Rating Value Likely Value

HV? Value

DO Site 1 Quantity Approximation Yes MC 0.4 0.5 0.7

DO Site 2 Quantity Approximation Yes MC 0.7 1.0 1.3

DO Site 3 Quantity Approximation Yes MC 1.4 2.0 2.6

DO Site 4 Quantity Approximation Yes MC 2.1 3.0 3.9

Temp. Quantity Approximation Yes MU 21.5 23.9 26.3
Site 1

Temp. Quantity Approximation Yes MU 23.2 25.8 28.4
Site 2

Temp. Quantity Approximation Yes RU 23.9 26.5 29.2
Site 3

Temp.  Quantity Approximation Yes MU 23.6 26.2 28.8
Site 4

Table 18 presents a sample description of the distributions that could be used to describe the uncertainty
we are quantifying.  The parameters of the uniform distribution are the minimum and maximum values estimated
in the field.  The triangular distribution parameters are the minimum, modal, and maximum values.  The normal
distribution parameters are the mean and standard deviation.  The mean is estimated by averaging the three
triangular distribution parameters.  Care must be taken not to use the mode and mean interchangeably.  The
standard deviation has been estimated as one sixth of the range in DO values.  The table demonstrates the relative
ease of describing the uncertainty with some possible distributions.

Table 18:  Distributions Describing DO Uncertainty, Trout Without Condition

Habitat Variable Uniform Distribution Triangular Distribution Normal Distribution

DO Site 1 (0.4,0.7) (0.4,0.5,0.7) (0.53,.05)

DO Site 2 (0.7,1.3) (0.7,1,1.3) (1,.2)

DO Site 3 (1.4,2.6) (1.4,2.0,2.6) (2,.2)

DO Site 4 (2.1,3.9) (2.1,3.0,3.9) (3,.3)
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The final step in characterizing the uncertainty present in our analysis would be to identify the
information that we would like to have had but did not.  This serves at least two purposes.  It is another way of
helping readers and decision-makers understand the uncertainty the analysts had to address.  It also helps critics
understand what must be done to improve the analysis.  Thus, the focus of this step should be to identify options
for improving the analysis.  When possible,  the time and approximate budgets associated with these
improvements should be indicated.  Knowing the alternatives to the analysis you present can be an effective way
to blunt the criticisms of others.

In the case study used here, it would have been desirable to have a good representative probability sample
of DO and maximum average water temperatures for each of the four sites in order to better estimate existing
conditions.  Future without conditions were assumed to be a simple extension of existing conditions.  The
estimates of with condition improvements could be improved with a representative sample of results from similar
projects in similar situations.  These data do not currently exist.  Gathering them would take well in excess of a
year and it would probably double the study budget.  Hence, we will make do with the available data.

APPLYING STEP 7:  DO RISK-BASED ANALYSIS

Instead of concentrating on the two important habitat variables for the three HSI models, the case study
specified uncertainty distributions for over 35 variables.  Describing the model in detail would inundate the reader
in unnecessary detail, so that will not be done here.   The analysis reproduced the U.S. Fish and Wildlife Service23

HSI models for rainbow trout, channel catfish, and largemouth bass in a single spreadsheet model.  Each model
was prepared on a separate worksheet.  Habitat units were computed for without and with project conditions for
each of the four sites and each of the three species.  Thus, there were 12 different sets of habitat unit estimates
without a project, 12 sets of with condition habitat unit estimates, and 12 sets of changes in habitat units. 

Figure 14 shows the basic architecture of the spreadsheet model.   There are four worksheets, one for
each HSI model and a fourth used to summarize the results.  Each HSI model is divided into four reaches.  Within
each reach,  a set of habitat variable measurements for the without condition and a set for the with condition are
defined.  A sample of these habitat variable sets is shown at Figure 15.  Without project conditions are defined
in columns B and C.  With project conditions are defined in columns E and F.

Also within each reach is the conversion of each habitat variable measurement (columns B and E) to a
suitability index value (columns C and F).  Life requisites are calculated for each indicator species without (cells
B34 through B38) and with (cells C34 through C38) a project in place.  An HSI is calculated for the without (cell
B39) and with (cell C39) conditions.  Habitat units, the product of HSI and Acreage (row 40) are shown without
the project (cell B44) and with (cell C44) the project.  The change in habitat units (cell D44) is also shown.

The calculation shown in Figure 15 shows no change in habitat units because the with project condition
DO value in cell F8 is a zero.  This has no particular significance beyond the fact that as one of
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thousands of possible outcomes of one of the alternative projects it shows the project could fail to produce any
improvements in habitat in this reach.  The structure of the spreadsheet model is beyond the scope of this manual
to discuss in detail.  What is important to notice is that the field-adapted trout model is nothing more than a
spreadsheet version of the HSI model that is capable of incorporating a Monte Carlo process into the analysis.

To understand how the model works, imagine hitting the F9 key to recalculate the model values.  A new
value for each habitat variable would be sampled from the probability distribution that describes the variable.
The model would then calculate a suitability index for each of these variable values.  Life requisites, the HSIs and
the habitat unit values would all change accordingly.  If we save the values of interest to us, for example the
habitat unit calculations in cells B44, C44, and D44 for say 10,000 different calculations of the spreadsheet, we
will have a pretty good idea of the various ways the habitat variables might combine to produce trout habitat.

The uncertainty in all 35 variables was translated into probability distributions as described in previous
paragraphs.  A Monte Carlo simulation, as described in the previous chapter, was used to estimate the range of
possible changes in habitat units that could result from implementation of a plan.  The model accounts for the
interdependencies of habitat variables among models.  For example, when DO is used in more than one model,
the same value is used for each model in a single iteration of the simulation.  More complex interactions of
variables were not considered, consistent with the normal use of the HEP analysis.  Results for two of the eight
possible plans are presented. 



1

2

3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

A B C D E F G

TROUT
 Site 1 Site 1

Without Project Condition With Project Condition
Habitat Variable Measure SI Measure SI
V1: Maximum Temperature
A=resident rainbow trout 23.9 0.2242788 20.6 0.7059581
V2: Maximum Temperature (embryo)
V3: Minimum dissolved oxygen Use this==> 0 Use this==> 0
A=<=15 Degrees C 0 0 0 0
B=>15 Degrees C 0.533333 0 4.533333 0
V4: Average Thalweg Depth Use this==> 1 Use this==> 1
    Average Stream Width 6 6
    A = <= 5m stream width 68.0667 1 68.0667 1
    B= > 5 m stream width 68.0667 1 68.0667 1
V5:  Average Velocity 
V6:  % Cover
V6:  % Cover, A = adults 8.5 0.616072 8.5 0.616072
V7: Substrate Size
V8: % Substrate Size
V9: Substrate Class (food) 1 1 1 1
V10: % pools 75.83333 0.892844 75.83333 0.892844
V11: % riparian vegetation 111.5 0.79964665 111.5 0.7996467
V12: % ground cover (erosion) 87.5 1 87.5 1
V13: Maximum-minimum PH 7.5 1 7.5 1
V14: Average annual base flow 3 0.06 3 0.06
V15: Pool class 3 0.3 3 0.3
V16: % fines
B = riffle-run 4 1 4 1
V17: % shade 3.833333 0.353667 3.833333 0.353667
V18: % average daily flow

Requisites: Without With Change
Adult (CA)
          (V10*V15)^0.5= 0.517545 0.517545 0
Is V6 > (V10*V15)^0.5  ?  (1=yes, 0=no) 1 1 0
Choose CA Equation 0.318845 0.318845 0
Adult (CA) 0.318845 0.318845 0
Other (CO) 0 0 0
HSI 0 0 0
Area in Acres 18.53 18.53 0
Habitat Units 0 0 0

Trout  Total Without With Change
Habitat Units 0 0 0
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Figure 15: Sample HSI Spreadsheet Model 
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Although this step is the center piece of the risk analysis, it is somewhat anti-climatic once the other steps
are followed.  Building the Monte Carlo simulation model can be time consuming the first time it is done because
of the learning curve involved.  Once built, however, models can be used over and over.  There are decided
economies of scale involved in the methods described in this manual.  

The model used was an Excel Version 7.0 spreadsheet model that used @RISK version 3.5.  These are
both the 32-bit Windows 95 versions of the software.  The computer was a 133 mh Pentium with 32M of RAM.
A 10,000-iteration simulation of the model took about 15 minutes to run.  The mean and standard deviation of
the change in habitat unit output distributions stabilized after about 1,000 iterations.  That means a simulation
could be restricted to a few minutes to complete 1,000 iterations.  This makes repeat runs of the model
reasonable.  The value of doing 10,000 iterations when the distribution parameters stabilize after 1,000 iterations
is to allow a better description of the range of potential extreme events.  More iterations better define the tails
of the output distributions.

Two alternative plans were investigated.  One was the construction of a labyrinth weir.  The other
included the weir and a minimum flow of 100 cubic feet per second (cfs).  We’ll refer to these plans as the weir
and minimum flow alternatives, respectively, through the remainder of this chapter.

APPLYING STEP 8:  REPORT RESULTS

A risk analysis can produce a plethora of information.  Figuring out what information is useful and what
is useless is an art that takes time to develop.  Clearly, the focus should be on presenting the information that will
support better decisions.  The nature of this information will change from study to study, however.   In this
section, we demonstrate some of the possibilities for presenting the results of a risk analysis.

MAKE YOUR ASSUMPTIONS EXPLICIT

In this case study we have assumed that the value of the environmental outputs can best be represented
by changes in the habitats of three fish species:  rainbow trout, channel catfish, and largemouth bass.  We have
further assumed that the U.S. Fish and Wildlife Service HSI models are appropriate tools for quantifying those
changes.  A $9,000 effort to collect data and complete this analysis was deemed appropriate given the
significance of the study and the resource constraints that existed.

This manual is not written in the same style as a study report would be because its objectives are
different.  For that reason, we will not repeat each and every assumption that has been discussed elsewhere in the
manual.  In an actual study document it would be appropriate to gather all the assumptions in one place and
clearly present them to the reader.  Many of the tables presented earlier could be used to good advantage for that
task.

TELL READER WHAT IS KNOWN

Don’t overlook the obvious.  Project reports, like some manuals, tend to be very long.  Reading them can
be an arduous task.  Important points can be buried in mounds of text where they can be overlooked.  It may be
helpful to tell the decision-maker/reader what is known, what is unknown, and what is partially known at some
prominent point in the study document, like the executive summary.  Such a paragraph for this case study might
look like this:
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The rainbow trout, channel catfish and largemouth bass are known to be the most important
recreational fisheries in the Brown Sugar River.  Due to budget constraints, data collection for
the HEP analysis was restricted to one day in the field for a team of wildlife biologists.  The
measurements of most habitat variables are considered to be more certain than uncertain.  Most
of them are of little importance in the estimation of project related increases in habitat units.
The most important variables in the HEP analysis were DO and water temperature.  There are
significant uncertainties about the future values of these variables.  Without-project estimates
of these values are considered better than the with-project estimates.  Further reductions in the
uncertainty surrounding these variables appear to be prohibitively expensive.

PRESENT THE RESULTS

The results must be presented in a fashion that assures the information essential to sound decision-
making is available to those who need it.  If complex displays must be used, they must also be explained.  To
simplify the demonstration of these points we will limit our results to the grand total change in habitat units.  The
information presented below includes habitat units for all three species and all four reaches of the Brown Sugar
River.

Expected Values

The results of a risk analysis will no longer have that point estimate precision to which many decision-
makers have become accustomed.  There is no longer going to be a single number generated and presented.
Nonetheless, the desire and need for a number will not mystically disappear.  Because the output of this 10,000-
iteration simulation is a distribution of 10,000 possible changes in habitat units, there is no one number that can
summarize all those results.  The mean of those 10,000 iterations, however, is the most useful single value
generated from the simulation.  Our 10,000 iterations represent a sample of all the possible outcomes that could
result from the weir or minimum flow alternatives.  The expected value of the population of all possible outcomes
is the value the mean of our simulation estimates.

If you want or need a single value to present in your analysis, use the mean of the simulation results.  If
you call it the most likely value, be sure to define it as the mean so it is not mistaken for a mode, another common
“most likely” value.  Table 19 presents selected mean values for the two plans evaluated for the Tentshow Dam
and Brown Sugar River.  Note that tables like the one that follows could be produced for without- and with-
project condition habitat unit estimates, HSI values, bass for site 1, bass for site 2, and so on.  We limit ourselves
to some simple examples that serve the basic demonstration purpose of the manual.  It is up to the analyst to
choose as much or as little information from the analysis as needed.

Table 19 shows that the weir with a minimum flow produces greater outputs than the weir alone.  This
is because the minimum flow reduces water temperatures, providing a more favorable environment for the trout.
The single values from this analysis makes it easier to notice certain things about the two plans.  First, the weir
alone can be expected to produce a better habitat in the first reach, identified as Site 1 in the
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Table 19:  Selected Mean Changes in Habitat Units

Item Weir Weir & Minimum Flow

Site 1 15.0 Habitat Units 11.8 Habitat Units

Site 2 20.2 Habitat Units 23.9 Habitat Units

Site 3 18.9 Habitat Units 23.5 Habitat Units

Site 4 3.6 Habitat Units 5.6 Habitat Units

Largemouth Bass 10.3 Habitat Units 10.2 Habitat Units

Channel Catfish 42.3 Habitat Units 35.3 Habitat Units

Rainbow Trout 5.1 Habitat Units 19.3 Habitat Units

Total 57.6 Habitat Units 64.8 Habitat Units

table.  The minimum flow plan is better in the other three reaches.  This may be significant in studies in which
the reaches are not all equally important.

Even more interestingly, we see the weir plan is better for the bass and catfish, while the minimum flow
plan is better for trout.  The more important species in the actual Corps study was the trout.  If the indigenous
species (catfish and bass) were considered more important and habitat units for them were weighted heavier than
habitat units for trout, we might consider the weir plan superior.

Reliance on a simple, single number makes it easier to point out that the minimum flow plan produces
the greatest environmental outputs overall.  More specifically, it produces greater environmental outputs for the
trout and at Sites 2, 3, and 4 than does the weir plan.  The weir plan produces greater outputs at Site 1 and for
the bass and catfish.  These trade-offs can then be weighed in any fashion desired by planners.

Minimums and Maximums

Once you have identified the mean values it can be helpful to present the minimum and maximum outputs
obtained in the analysis.  These establish the range of possible outcomes and can be a useful measure of the
dispersion of the results.  Table 20 presents minimum, mean, and maximum values for the two plans.

Perhaps the most difficult aspect of presenting the results of a risk-based analysis is figuring out what
is significant and what is merely interesting.  For example, we see the smallest value for the minimum flow plan
can result in less output than the weir plan.  Decision-makers who focus on this worst case scenario might reason
that the costs associated with the minimum flow are not worth incurring if it is possible that plan would not even
produce as much output as the cheaper plan.  Is that important?  It is probably not very important in the scheme
of things.  On the other hand, in any given study, if you know the personalities and concerns of the various
stakeholders, such a thing could become important.  Hence, the presentation of risk-
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Table 20:  Minimum, Mean, and Maximum Values for the Weir and Minimum Flow Plans

Item Weir Min Weir Mean Weir Max Flow Min Flow Mean Flow Max

Site 1 0 15.0 30.4 0 11.8 29.1

Site 2 2.9 20.2 38.5 3.9 23.9 37.5

Site 3 4.3 18.9 43.3 2.3 23.5 45.3

Site 4 0 3.6 13.4 0 5.6 13.8

Bass 0 10.3 21.9 0 10.2 21.7

Catfish 25.9 42.3 51.7 18.1 35.3 49.7

Trout 0 5.1 41.0 0 19.3 51.0

Total 29.7 57.6 95.4 25.7 64.8 103.6

based analysis is more art than science.  It depends on the circumstances of the study, including the personalities
of the decision-makers.  Make sure you show what people will want to see.

The reason for presenting extreme values is to see if they tell us anything of interest.  Look at the
minimum values.  What do you see of interest?   There are some zeroes in there.  That means the plan might have
no effect at all.  Based on the model you built and the assumptions you made, it is possible that under the right
set of circumstances the plan could have no impact at all on trout or bass habitat.  Similarly, Sites 1 and 4 might
go unimproved.  This is true for both plans.  When we look at the maximums we see less startling results.  It is
somewhat interesting that both plans have quite a range in outcomes for the trout, from 0 to 41 and 0 to 51
habitat units, respectively.

The range of results can sometimes reveal surprising things.  It can show us things about our plans that
we would never have seen if we had relied on a single deterministic analysis.  When the ranges present
unacceptable results, such as no effect, or very desirable effects, such as outputs eight times the mean (as happens
with trout for the weir plan), these may be worth investigating.  It may be desirable to examine your models and
figure out what causes the undesirable results, so they can be avoided, or what causes the desirable results, so that
can be cultivated.  In this case, the uncertainty in the range of our key variables, identified earlier in the risk
analysis, are what cause the ranges observed here.

In order to eliminate the possibility of no effect we would have to develop plans that guarantee smaller
and more desirable ranges in DO and water temperature, especially temperature.  If the range of output
uncertainty present in Table 20 is unacceptable, then additional study should be done before construction, in an
attempt to limit the uncertainty.  Perhaps some site specific modeling studies or a more thorough review of the
literature would reveal better information about the ranges of temperature and DO that could result from the
alternative plans.  These may entail expenditures that were initially beyond the budget.  The risk-based analysis
results could, however, be used to justify the expenditure in an attempt to improve the outcome of the project.
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In some cases, the minimums and maximums for any one site or species may not vary much from one
plan to the other.  When that happens, avoid the compulsion to try to say something significant about your results.
It may be more honest to say that the table of minimums and maximums reveals nothing of particular note.

There is, however, one thing about such tables that can cause readers of these tables considerable
difficulty.  You should expect this difficulty and defuse it with an explanation.  Look at the means.  If you add
the four sites or the three species you get the total mean.  Now try that with the minimum or maximum values.
You cannot reproduce the grand minimum or the grand maximum by adding the component extreme values.  This
convinces many readers there is something wrong with your table and that can lead to a loss of credibility for your
report.

Keep in mind these numbers result from a simulation of 10,000 iterations.  The minimum value for Site
1 may have occurred on any one of those iterations.  Likewise, the minimum value for Site 3 may have occurred
on any one of those iterations.  It almost surely was not on the same iteration that the minimum for Site 1
occurred.  The iteration on which the grand minimum was obtained must have had low values for each
site/species, but it may not have been the absolute minimum value for any of them.  So, if you do nothing else,
make sure the reader is told the minimum and maximum values cannot be added to obtain the total minimum and
maximum values.

Cumulative Distribution Functions

The weir plan is expected to produce about 57.6 more habitat units, while the minimum flow plan is
expected to result in about 64.8 more habitat units.  The weir plan could produce anywhere from 29.7 to 95.4
habitat units.  This is helpful information.  Even though the plan could be ineffective at a particular site or with
a particular species. there is no likelihood the plan would be entirely ineffective.  Nonetheless, we see a low output
of habitat units is possible.  It would be helpful if we could get an idea how likely some of these different outputs
are.  A cumulative distribution function can be an effective way to present this information. 

Figure 16 shows the probabilities of various changes in habitat units.  To read it, begin on the vertical
axis.  Pick a value like 0.1 and read across to the curve and you’ll see about 47 or 48.  This means there is a 10
percent chance the project will result in 47 or fewer habitat units.  Alternatively, you can select a value on the
horizontal axis, say 60 habitat units.  Reading up to the curve then across, we see there is about a 65 percent
chance of obtaining 60 or fewer habitat units from the weir plan.  Using what we know about probabilities we
can also say there is a 35 percent chance of more than 60 habitat units from the weir plan.  Table 21 presents the
cumulative distribution function in table form.

Table 21 presents a numerical example of one plan that stochastically dominates another.  Notice that
for any probability the outputs of the minimum flow plan exceed the outputs of the weir plan.  In the world of
risk-based analysis, this means the minimum flow plan offers a higher probability of a better outcome.
Cumulative distribution functions can be generated for any model output or input.



Figure 16:  CDF for Weir Outputs 
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ENVIRONMENTAL OUTPUTS AND INCREMENTAL COST ANALYSIS

Estimating environmental outputs is an intermediate step in an ecosystem restoration study.  Although
environmental outputs are an important part of the analysis, it is only a part of the analysis.  A risk-based analysis
of environmental outputs is only a part of the risk analysis for a study.

One of the principle decision criterion in an ecosystem restoration project is the incremental cost of the
environmental outputs that result from a variety of management measures.  The methods discussed in this manual
can be used to get an estimate of habitat units for any environmental project.  The outputs of a risk-based
analysis, such as were summarized above, can become inputs to additional analysis.  For example, many analysts
use the ECO-EASY software developed by IWR to estimate the incremental costs of environmental investments.
At the current time, risk analysis with ECO-EASY has not been automated.  Nonetheless, it would be a simple
matter to make multiple runs of a final set of alternatives using pessimistic, most likely, and optimistic scenarios
derived from the risk analysis.  These extreme scenarios could be actual minimum and maximum habitat unit
values or they could represent upper and lower limits for any desired confidence level.

COMPARING RESULTS 

Earlier in this manual we presented the District’s estimate of the environmental outputs along with a
simple first attempt at some risk analysis.  In this chapter we have gone considerably beyond the parameters of
those earlier analyses.  For example, we have defined uncertainty in key variables that were considered certain
in the District analysis.  That simple fact has substantially altered the nature of the results
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Table 21:  CDF for Change in Habitat Units Attributable to Weir Plan

Probability Habitat Unit Change is Change in Habitat Change in Habitat
Less Than Value Shown Units (Weir) Units (Flow)

0.0 29.4 25.7

0.05 44.1 45.7

0.1 46.9 49.9

0.15 48.8 52.7

0.2 50.3 55.0

0.25 51.5 56.9

0.3 52.7 58.6

0.35 53.7 60.2

0.4 54.8 61.7

0.45 55.8 63.1

0.5 56.8 64.6

0.55 57.8 66.2

0.6 58.9 67.7

0.65 60.2 69.3

0.7 61.7 70.9

0.75 63.2 72.8

0.8 65.0 74.7

0.85 66.9 77.0

0.9 69.6 79.7

0.95 73.8 83.9

1.00 95.4 103.6

of the various estimates of environmental outputs.  The changes in habitat units estimated in this chapter are
substantially lower than those presented earlier because, for example, without project DO levels may not be as
bad as the District analysis assumed.  Likewise, with-project DO levels may not be as good as the District
assumed.



Risk and Uncertainty Analysis Procedures
for the Evaluation of Environmental Outputs

99

The analyses presented in this chapter provided an opportunity to test and demonstrate the feasibility
of the risk-based analysis methods described herein.  A direct comparison of the results presented in this chapter
with the results presented in Chapter Two would be inappropriate and misleading.  Because this chapter relies
on assumptions substantially different from those used by the District, no direct comparison of results is offered.

SUMMARY AND LOOK FORWARD

This chapter has demonstrated the feasibility of using the simple procedures developed in this manual
for conducting a risk-based analysis of the environmental outputs of an ecosystem restoration project.  The
Tentshow Dam and Brown Sugar River project was modified to reflect a much more rigorous risk analysis than
was attempted earlier in the manual.  The point of this analysis was to demonstrate that such analyses are feasible
within the constraints of a typical Section 1135 study with a modest budget.  The data requirements for a risk-
based analysis can actually be far more modest than shown here.  Following the procedures should lead the
analysts to concentrate on the uncertainty in those key variables that are most likely to influence the decision
process.   The next chapter summarizes the results of this analysis and offers a few conclusions. 
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CHAPTER SEVEN:  SUMMARY AND CONCLUSIONS

SUMMARY

There is little evidence that risk analysis has been incorporated into the analysis of ecosystem restoration
projects in any systematic way to this point in time.  There is some evidence, see for example IWR Report 96-R-
8, An Introduction to Risk and Uncertainty in the Evaluation of Environmental Investments, to suggest that
uncertainty is ubiquitous in these kinds of projects.  This would seem to make ecosystem restoration studies
logical candidates for risk analysis.

This manual has focused on one important but narrow aspect of environmental investment decisions:
the estimation of the outputs of environmental projects.  Habitat evaluation models are one of the most commonly
used methods of estimating environmental outputs. The Habitat Evaluation Procedure of the U.S. Fish and
Wildlife Service, as one of the more popular and better known of these methods, was used in the demonstration
project that is the subject of this manual.

Through the generous cooperation of a Corps District office, the authors were able to attempt a risk-
based analysis of an actual project.  The experience provided an opportunity to learn many lessons. The lessons
learned about preparing for a risk analysis, collecting data, and conducting the analysis lead to the development
of a flexible strategy for approaching risk analysis in these kinds of projects.  The steps of this flexible procedure
have been defined and demonstrated in this manual.  In addition, some of the analytical tools most commonly used
in risk analysis  have been discussed.

One of the major lessons learned and a central tenet of the risk analysis procedures is to focus on the key
uncertainties in your analysis.  Although the assumptions made about the key variables in the case study were
based on factual evidence taken from reports of other Federal agencies, they were made by the authors of this
manual after the field analysis for the case study.  The results of this demonstration analysis suggest project
outputs can be sensitive to the uncertainties that attend key variables in the analysis.

The primary effort in this analysis was constructing and debugging the spreadsheet versions of U.S. Fish
and Wildlife Service’s HSI models.  This took about three days of labor.  The data collection efforts, the
definition and quantification of uncertainty, and the risk analysis all required very modest effort.  The simulation
model used to estimate environmental outputs took 15 minutes to run 10,000 iterations. 

CONCLUSIONS

The conclusions we draw from this demonstration project are simple and few:

1. Little risk analysis is currently being done in ecosystem restoration projects.

2. Risk analysis for the sake of risk analysis has no place in ecosystem restoration studies.

3. If risk analysis is to be done, it must be inexpensive and straightforward and it must
enlighten the decision process.
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4. For risk analysis procedures to be helpful to environmental investment decisions, they
must be flexible and adaptable to the needs of the many different types of ecosystem
restoration studies being done.

5. The eight-step procedure presented in this manual has some potential for aiding the
incorporation of risk analysis into ecosystem restoration projects.

6. Experimentation with the procedures offered here and other approaches to risk analysis
in ecosystem restoration are prime candidates for future research in this field.
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Appendix 1:  Case Study Habitat Variable Measurements
and Preliminary HEP Analysis Results

Habitat Variable Measurements

Table 1 summarizes the measurement and estimation of the habitat variables for the three indictor species
at each of four measurement sites.  Interval estimates of some variables are evident in the table.  Blanks in the
table were subsequently filled in by the analysts.  Significantly, for this research effort, there is no uncertainty
reflected in the dissolved oxygen or temperature variables.

HEP Analysis Results

Tables 2 and 3 present the results of the District’s actual HEP analysis.  Habitat suitability indices for
each of nine plans at each of the four sites by species are presented in Table 2.  The habitat units that result with
each of the plans is shown in Table 3.

Preliminary Risk-Based HEP Analysis Results

Table 4 presents the number of habitat units expected to result from the various plans by site and species.
The three values presented represent the minimum, mean, and maximum values obtained from the Monte Carlo
simulation conducted using distributions of habitat variables based upon the values from Table 1.  Frequently,
the habitat units show little sensitivity to the changes in habitat variables.  This is due, primarily, to the small
range in variables used by the analysts and the fact that the most important habitat variables were not varied at
all.

Table 5 presents the changes in habitat units attributable to each plan.  These values are based on the
values presented in Table 4.  As with Table 4, the three values represent selected results of the simulation output,
specifically the minimum, mean, and maximum.  Some plans show no improvements for some species.  Plan D
shows a decrease for catfish in some sites despite an overall increase.
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Table 1:  Habitat Variable Measurements Collected by Case Study Field Team

Habitat Site 1: Site 2: Gravel Site 3: Trout Site 4: River
Variables Weir Site Operation Camp Road

% canopy cover of herbaceous vegetation 2-10 2-10 2-10 1-5

Dominant growth aquatic vegetation growth form None -- -- --

Water regime Permanent Permanent Permanent Permanent

% cover 2-5 2-5 2-5 10-15

% pools 75-80 50-60 95 95-100

Average thalweg depth (cm) 67.1 67.1 213.4 91.5

Pool class rating C C C C

Predominant substrate type (trout) A A B B

Substrate type (channel catfish) A A A A

Substrate composition (largemouth bass) D D D D

% streamside vegetation 80-90 65 65-75 90

%riffle fines 0-2 0-2 0-2 0-2

% streamside vegetation and rocky ground (erosion) 95-100 75-80 75-85 90

% midday shade 1-2 1-2 5 2-3

% pool and backwater area 75-80 50-60 95-97 95-100

% pool bottom cover 2-5 2-5 2-5 10-15

Water level fluctuation (ft.) estimate 6-8 6-8 6-8 6-8

Water level fluctuation (m) 1.65 1.46 1.46 1.46

Measured dissolved oxygen (mg/l) (8/15/96) 13 10.2 -- --

Measured temperature (CE) (8/15/96) 22 23 -- --

Average maximum water temperature at 25 cfs (CE) 23.9 25.8 26.5 26.2

Average maximum water temperature at 100 cfs (CE) 20.6 24.2 25.0 24.7

Average water temperature at 25 cfs (CE) 21.7 25.0 26.1 26.0

Average water temperature at 100 cfs (CE) 19.9 22.0 23.8 24.8

Average minimum dissolved oxygen without weir (mg/l) 0.5 1.5 2.1 2.5

Average minimum dissolved oxygen with weir (mg/l) 6.0 6.3 6.5 6.6

Dissolved oxygen levels A A A A

Turbidity (mg/l) 0.3-3.6 0.3-3.6 0.3-3.6 0.3-3.6

Salinity <1 <1 <1 <1

Length of growing season 212 212 212 212
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Annual maximum or minimum pH 7.1-8.2 7.1-8.2 7.1-8.2 7.1-8.2

pH C C C C

Average annual base flow (cfs) 25 25 25 25

Maximum current velocity ? ? ? ?

Average current velocity (ft/s) 1.0 1.4 0.7 1.2

Average current velocity (cm/s) 30.5 42.7 21.3 36.6

Wetted perimeter (acres/mile) 11.89 16.48 16.48 16.48

Stream gradient (m/km) 0.55 0.55 0.55 0.55
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Table 2:  District HEP Analysis Results,  Habitat Suitability Index (HSI) Summary by Alternative & Site

Rainbow Trout

Alternative Site 1 Site 2 Site 3 Site 4

Without weir 0.00 0.00 0.00 0.00

With weir, no minimum flow 0.64 0.00 0.00 0.00

With weir, 100 cfs 0.68 0.66 0.59 0.56

With weir, A 0.64 0.00 0.00 0.00

With weir, B 0.67 0.00 0.00 0.00

With weir, C 0.67 0.00 0.00 0.00

With weir, D 0.00 0.00 0.00 0.00

With weir, E 0.66 0.00 0.00 0.00

With weir, F 0.67 0.00 0.00 0.00

Channel Catfish

Without weir 0.00 0.14 0.26 0.39

With weir, no minimum flow 0.57 0.62 0.67 0.62

With weir, 100 cfs 0.55 0.58 0.62 0.61

With weir, A 0.60 0.56 0.62 0.58

With weir, B 0.57 0.62 0.62 0.60

With weir, C 0.57 0.62 0.62 0.59

With weir, D 0.61 0.42 0.49 0.49

With weir, E 0.58 0.59 0.59 0.59

With weir, F 0.57 0.62 0.58 0.62

Largemouth Bass

Without weir 0.00 0.08 0.18 0.26

With weir, no minimum flow 0.60 0.57 0.51 0.58

With weir, 100 cfs 0.58 0.59 0.60 0.66

With weir, A 0.59 0.60 0.60 0.60

With weir, B 0.60 0.60 0.60 0.60

With weir, C 0.60 0.57 0.57 0.57

With weir, D 0.59 0.60 0.60 0.60

With weir, E 0.60 0.60 0.60 0.60

With weir, F 0.60 0.62 0.62 0.62
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Table 3:  District HEP Analysis Results, Habitat Unit Summary by Alternative and Site

Rainbow Trout

Alternative Site 1 Site 2 Site 3 Site 4 Total

Without weir 0.00 0.00 0.00 0.00 0.00

With weir, no minimum flow 11.85 0.00 0.00 0.00 11.85

With weir, 100 cfs 17.37 19.50 22.83 7.42 67.12

With weir, A 14.85 0.00 0.00 0.00 14.85

With weir, B 15.55 0.00 0.00 0.00 15.55

With weir, C 15.55 0.00 0.00 0.00 15.55

With weir, D 0.00 0.00 0.00 0.00 0.00

With weir, E 13.77 0.00 0.00 0.00 13.77

With weir, F 13.98 0.00 0.00 0.00 13.98

Channel Catfish

Without weir 0.00 3.15 7.67 3.94 14.76

With weir, no minimum flow 10.56 13.96 19.76 6.26 50.54

With weir, 100 cfs 14.05 17.14 23.99 8.08 63.26

With weir, A 13.92 15.24 22.09 7.08 58.32

With weir, B 13.23 16.87 22.09 7.32 59.50

With weir, C 13.23 16.87 22.09 7.20 59.38

With weir, D 12.73 10.44 15.95 5.46 44.59

With weir, E 12.10 14.67 19.21 6.58 52.56

With weir, F 11.89 15.42 18.88 6.91 53.10

Largemouth Bass

Without Weir 0.00 1.80 5.31 2.63 9.74

With weir, no minimum flow 11.11 12.84 15.04 5.86 44.85

With weir, 100 cfs 14.82 17.43 23.21 8.75 64.21

With weir, A 13.69 16.32 21.37 7.32 58.71

With weir, B 13.92 16.32 21.37 7.32 58.71

With weir, C 13.92 15.51 20.31 6.95 56.69

With weir, D 12.31 14.92 19.53 6.69 53.45

With weir, E 12.52 14.92 19.53 6.69 53.66

With weir, F 12.52 15.42 20.19 6.91 55.03
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Table 4:  Habitat Units Summary by Site (Minimum, Mean, Maximum)

Rainbow Trout

Alternative Site 1 Site 2 Site 3 Site 4

Without weir 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

With weir, no minimum flow 10.8,11.0, 11.1 11.3, 11.6, 11.6 0, 0, 0 0, 0, 0

With weir, 100 cfs 11.5, 11.7, 11.8 13.3, 13.6, 13.6 8.6, 14.6, 16.6 3.4, 3.8, 4.2

With weir, A 10.9, 11.1, 11.2 0, 0, 0 0, 0, 0 0, 0, 0

With weir, B 11.3, 11.5, 11.6 0, 0, 0 0, 0, 0 0, 0, 0

With weir, C 11.3, 11.5, 11.6 0, 0, 0 0, 0, 0 0, 0, 0

With weir, D 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

With weir, E 11.2, 11.5, 11.5 0, 0, 0 0, 0, 0 0, 0, 0

With weir, F 11.3, 11.6, 11.6 0, 0, 0 0, 0, 0 0, 0, 0

Channel Catfish

Without weir 0, 0, 0 1.9, 1.9, 1.9 5.4, 5.4, 5.4 2.5, 2.5, 2.5

With weir, no minimum flow 10.3, 10.7, 11.1 13.7, 14.3, 14.7 18.8, 19.5, 20.1 5.7, 6.0, 6.2

With weir, 100 cfs 5.5, 5.5, 5.5 13.0, 13.4, 13.9 18.0, 18.6, 19.2 5.6, 5.8, 6.1

With weir, A 10.9, 11.3, 11.7 13.8, 14.3, 14.0 18.8, 19.5, 20.1 5.4, 5.7, 5.9

With weir, B 10.4, 10.8, 11.2 14.3, 14.8, 15.3 18.9, 19.6, 20.3 5.7, 5.9, 6.1

With weir, C 10.4, 10.8, 11.2 14.2, 14.7, 15.2 19.0, 19.7, 20.3 5.5, 5.8, 6.0

With weir, D 11.2, 11.7, 12.1 1.1, 1.1, 1.1 4.4, 4.4, 4.4 1.5, 1.5, 1.5

With weir, E 10.4, 10.9, 11.3 13.8, 14.3, 14.8 18.1, 18.8, 19.4 5.5, 5.7, 5.9

With weir, F 10.3, 10.7, 11.1 14.3, 14.8, 15.3 16.6, 19.3, 19.9 5.7, 6.0, 6.2

Largemouth Bass

Without weir 1.9, 1.9, 1.9 2.3, 2.3, 2.3 4.6, 4.6, 4.6 1.6, 1.6, 1.6

With weir, no minimum flow 7.3, 7.3, 7.3 6.4, 6.6, 6.8 4.6, 4.6, 4.6 1.6, 1.6, 1.6

With weir, 100 cfs 7.3, 7.3, 7.3 8.5, 8.7, 8.9 10.3, 10.3, 10.3 3.1, 3.1, 3.1

With weir, A 6.4, 6.4, 6.4 3.4, 3.5, 3.5 4.6, 4.6, 4.6 1.6, 1.6, 1.6

With weir, B 7.3, 7.3, 7.3 3.4, 3.5, 3.5 4.6, 4.6, 4.6 1.6, 1.6, 1.6

With weir, C 7.3, 7.3, 7.3 3.4, 3.5, 3.5 4.6, 4.6, 4.6 1.6, 1.6, 1.6

With weir, D 4.6, 4.6, 4.6 3.4, 3.5, 3.5 4.6, 4.6, 4.6 1.6, 1.6, 1.6

With weir, E 7.2, 7.2, 7.2 3.4, 3.5, 3.5 4.6, 4.6, 4.6 1.6, 1.6, 1.6

With weir, F 7.3, 7.3, 7.3 3.4, 3.5, 3.5 4.6, 4.6, 4.6 1.6, 1.6, 1.6
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Table 5:  Change in Habitat Units (Between Without-Project & With-Project Conditions)
Summary by Site (Minimum, Mean, Maximum)

Rainbow Trout

Alternative Site 1 Site 2 Site 3 Site 4

With weir, no minimum flow 10.6,11.0, 11.1 11.3, 11.5, 11.6 0, 0, 0 0, 0, 0

With weir, 100 cfs 11.5, 11.7, 11.8 13.3, 13.6, 13.6 8.6, 14.6, 16.6 3.4, 3.8, 4.2

With weir, A 10.9, 11.1, 11.2 0, 0, 0 0, 0, 0 0, 0, 0

With weir, B 11.3, 11.5, 11.6 0, 0, 0 0, 0, 0 0, 0, 0

With weir, C 11.3, 11.5, 11.6 0, 0, 0 0, 0, 0 0, 0, 0

With weir, D 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

With weir, E 11.2, 11.5, 11.5 0, 0, 0 0, 0, 0 0, 0, 0

With weir, F 11.3, 11.6, 11.6 0, 0, 0 0, 0, 0 0, 0, 0

Channel Catfish

With weir, no mininum flow 10.3, 10.7, 11.1 11.9, 12.4, 12.8 13.4, 14.1, 14.7 3.2, 3.5, 3.7

With weir, 100 cfs 5.5, 5.5, 5.5 11.1, 11.6, 12.0 12.5, 13.2, 13.8 3.1, 3.3, 3.5

With weir, A 10.9, 11.3, 11.7 13.4, 14.0, 14.7 12.0, 12.5, 12.9 2.9, 3.1, 3.4

With weir, B 10.4, 10.8, 11.2 12.4,13.0, 13.4 13.5, 14.2, 14.9 3.1, 3.4, 3.6

With weir, C 10.4, 10.8, 11.2 12.3, 12.8, 13.3 13.6, 14.3, 14.9 3.0, 3.2, 3.5

With weir, D 11.2, 11.7, 12.1 -0.8, -0.8, -0.8 -1.0, -1.0, -1.0 -1.0, -1.0, -1.0

With weir, E 10.4, 10.9, 11.3 12.0, 12.5, 12.9 12.7, 13.4, 14.0 3.0, 3.2, 3.4

With weir, F 10.3, 10.7, 11.1 12.4, 13.0, 13.4 13.2, 13.9, 14.5 3.2, 3.5, 3.7

Largemouth Bass

With weir, no minimum flow 5.5, 5.5, 5.5 4.2, 4.3, 4.5 0, 0, 0 0, 0, 0

With weir, 100 cfs 5.5, 5.5, 5.5 6.2, 6.5, 6.7 5.7, 5.7, 5.7 1.6, 1.6, 1.6

With weir, A 4.5, 4.5, 4.5 1.1, 1.2, 1.3 0, 0, 0 0, 0, 0

With weir, B 5.5, 5.5, 5.5 1.1, 1.2, 1.3 0, 0, 0 0, 0, 0

With weir, C 5.5, 5.5, 5.5 1.1, 1.2, 1.3 0, 0, 0 0, 0, 0

With weir, D 2.8, 2.8, 2.8 1.1, 1.2, 1.3 0, 0, 0 0, 0, 0

With weir, E 5.3, 5.3, 5.3 1.1, 1.2, 1.3 0, 0, 0 0, 0, 0

With weir, F 5.5, 5.5, 5.5 1.1, 1.2, 1.3 0, 0, 0 0, 0, 0
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APPENDIX 2:

DATA USED FOR IDEALIZED RISK-BASED ANALYSIS
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Appendix 2:  Data Used for Idealized Risk-Based Analysis

Introduction

The idealized risk-based analysis presented in Chapter Six is based on the quantification of uncertainties
in a large number of habitat variables.  In the pages that follow, the nature of that uncertainty is described in some
detail.  The values presented here formed the basis for triangular and uniform distributions as described in the
text.
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Tentshow Dam/ Brown Sugar River Restoration Study
Possible Ranges of Values for Habitat Variables 

Rainbow Trout
Site 1 Site 2 Site 3 Site 4

Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max
V1 Without weir 21.5 23.9 26.3 23.2 25.8 28.4 23.9 26.5 29.2 23.6 26.2 28.8
(max temp) Weir, no min flow 21.5 23.9 26.3 23.2 25.8 28.4 23.9 26.5 29.2 23.6 26.2 28.8
(degrees C) Weir w/ 100cfs 18.5 20.6 22.7 21.8 24.2 26.6 22.5 25.0 27.5 22.2 24.7 27.2
Notes: Mean:  same as District

Min:  mean-10%
Max:  mean+10%

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V3 Without weir 0.4 0.5 0.7 0.7 1.0 1.3 1.4 2.0 2.6 2.1 3.0 3.9
(avg.min DO) Weir, no min flow 3.2 4.5 5.9 4.6 6.5 8.5 4.7 6.7 8.7 4.8 6.8 8.8
(mg/liter) Weir w/ 100cfs 3.2 4.5 5.9 4.6 6.5 8.5 4.7 6.7 8.7 4.8 6.8 8.8
Notes: Mean:  Point estimates from other Federal agency reports

Min:  mean-30%
Max:  mean+30%

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V4 Without weir 15.2 67.1 121.9 15.2 67.1 121.9 15.2 67.1 121.9 15.2 91.5 121.9
(avg. Thalweg depth) Weir, no min flow 15.2 67.1 121.9 15.2 67.1 121.9 15.2 67.1 121.9 15.2 91.5 121.9
(cm) Weir w/ 100cfs 15.2 67.1 121.9 15.2 67.1 121.9 15.2 67.1 121.9 15.2 91.5 121.9
Notes: Mean:  Same as District

Min:  shallowest observation at all 4 sites
Max:  deepest observation at all 4 sites

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V6A Without weir 2.0 8.5 15.0 2.0 8.5 15.0  2.0 8.5 15.0 2.0 8.5 5.0
(% instream cover) Weir, no min flow 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0
(%) Weir w/ 100cfs 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0
Notes: Mean:  Average of Min & Max.

Min:  lowest percentage observed at all 4 sites
Max:  highest percentage observed at all 4 sites

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V9 Without weir .5B,.5A .3B,.7A 1.0A .5B,.5A .3B,.7A 1.0A  1.0B .7B,.3A .5B,.5A 1.0B .7B,.3A .5B,.5A
(pred.substrate type Weir, no min flow .5B,.5A .3B,.7A 1.0A .5B,.5A .3B,.7A 1.0A  1.0B .7B,.3A .5B,.5A 1.0B .7B,.3A .5B,.5A
(letter designation) Weir w/ 100cfs .5B,.5A .3B,.7A 1.0A .5B,.5A .3B,.7A 1.0A 1.0B .7B,.3A .5B,.5A 1.0B .7B,.3A .5B,.5A
Notes: Mean:  Expert judgment of possible split between A&B, forcing entire range to be some portion A & some portion B

Min:  B was lowest category observed at sites 3&4
Max:  A was highest category observed at sites 1&2

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V10 Without weir 50.0 77.5 100.0 50.0 55.0 100.0 50.0 95.0 100.0 50.0 97.5 100.0
(% pools) Weir, no min flow 50.0 77.5 100.0 50.0 55.0 100.0 50.0 95.0 100.0 50.0 97.5 100.0
(%) Weir w/ 100cfs 50.0 77.5 100.0 50.0 55.0 100.0 50.0 95.0 100.0 50.0 97.5 100.0
Notes: Mean: Same as District

Min: Lowest % observed at all 4 sites
Max: Highest % observed at all 4 sites
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Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V11 Without weir 65.0 89.5 180.0 65.0 69.5 180.0 65.0 74.5 180.0 65.0 92.3 180.0
(% streamside veg.) Weir, no min flow 65.0 89.5 180.0 65.0 69.5 180.0 65.0 74.5 180.0 65.0 92.3 180.0
(% transformed index)Weir w/ 100cfs 65.0 89.5 180.0 65.0 69.5 180.0 65.0 74.5 180.0 65.0 92.3 180.0
Notes: Mean: Same as District

Min: Lowest index possible from % observed at all 4 sites
Max: Highest index possible from % observed at all 4 sites

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V12 Without weir 75.0 87.5 100.0 75.0 87.5 100.0 75.0 87.5 100.0 75.0 87.5 100.0
(% stream veg. eros.) Weir, no min flow 75.0 87.5 100.0 75.0 87.5 100.0 75.0 87.5 100.0 75.0 87.5 100.0
(%) Weir w/ 100cfs 75.0 87.5 100.0 75.0 87.5 100.0 75.0 87.5 100.0 75.0 87.5 100.0
Notes: Mean: Avg. of Min & Max

Min: Lowest % observed at all 4 sites
Max: Highest % observed at all 4 sites

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V13 Without weir 6.5 7.5 8.5 6.5 7.5 8.5 6.5 7.5 8.5 6.5 7.5 8.5
(pH)  Weir, no min flow 6.5 7.5 8.5 6.5 7.5 8.5 6.5 7.5 8.5 6.5 7.5 8.5
(pH number) Weir w/ 100cfs 6.5 7.5 8.5 6.5 7.5 8.5 6.5 7.5 8.5 6.5 7.5 8.5
Notes: Mean: Avg. of Min & Max

Min: Lowest  value District used at all 4 sites
Max: Highest value District used at all 4 sites

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V14 Without weir 1.0 2.0 6.0 1.0 2.0 6.0 1.0 2.0 6.0 1.0 2.0 6.0
(avg base flow) Weir, no min flow 1.0 2.0 6.0 1.0 2.0 6.0 1.0 2.0 6.0 1.0 2.0 6.0
(as % of avg.daily flow)Weir w/ 100cfs 5.5 6.5 7.5 5.5 6.5 7.5 5.5 6.5 7.5 5.5 6.5 7.5
Notes: Mean: Value District used

Min: Lowest  possible value based on other Federal agency reports
Max: Highest  possible value based on other Federal agency reports

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V15 Without weir 1.0C .7C,.3B .5C,.5B 1.0C .7C,.3B .5C,.5B 1.0C .7C,.3B .5C,.5B 1.0C .7C,.3B .5C,.5B
(pool class rating) Weir, no min flow 1.0C .7C,.3B .5C,.5B 1.0C .7C,.3B .5C,.5B 1.0C .7C,.3B .5C,.5B 1.0C .7C,.3B .5C,.5B
(letter designation) Weir w/ 100cfs 1.0C .7C,.3B .5C,.5B 1.0C .7C,.3B .5C,.5B 1.0C .7C,.3B .5C,.5B 1.0C .7C,.3B .5C,.5B
Notes: Mean: Expert judgment of possible split between C&B, forcing entire range to be some portion C & some portion B

Min: C was lowest (& only) category observed at all sites
Max: Expert judgment of possible split between C&B, forcing entire range to be some portion C & some portion B

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V16B Without weir 0.0 2.0 10.0 0.0 2.0 10.0 0.0 2.0 10.0 0.0 2.0 10.0
(% riffle fines) Weir, no min flow 0.0 2.0 10.0 0.0 2.0 10.0 0.0 2.0 10.0 0.0 2.0 10.0
(%) Weir w/ 100cfs 0.0 2.0 10.0 0.0 2.0 10.0 0.0 2.0 10.0 0.0 2.0 10.0
Notes: Mean: District's value

Min: Lowest % observed at all sites
Max: Expert  judgment of reasonable %.  Highest observed % value at all sites was 2%

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V17 Without weir 0.0 1.5 10.0 0.0 1.5 10.0 0.0 5.0 10.0 0.0 3.0 10.0
(% midday shade) Weir, no min flow 0.0 1.5 10.0 0.0 1.5 10.0 0.0 5.0 10.0 0.0 3.0 10.0
(%) Weir w/ 100cfs 0.0 1.5 10.0 0.0 1.5 10.0 0.0 5.0 10.0 0.0 3.0 10.0
Notes: Mean: District's value

Min: Expert judgment of reasonable %.  Lowest % observed at all sites was 1%
Max: Expert judgment of reasonable %.  Highest observed % value at all sites was 5%
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Channel Catfish

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V1 Without weir 50.0 77.5 100.0 50.0 55.0 100.0 50.0 95.0 100.0 50.0 97.5 100.0
(% pools) Weir, no min flow 50.0 77.5 100.0 50.0 55.0 100.0 50.0 95.0 100.0 50.0 97.5 100.0
(%) Weir w/ 100cfs 50.0 77.5 100.0 50.0 55.0 100.0 50.0 95.0 100.0 50.0 97.5 100.0
Notes: Mean: Same as District

Min: Lowest % observed at all 4 sites
Max: Highest % observed at all 4 sites

 
Site 1 Site 2 Site 3 Site 4

Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max
V2 Without weir 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0
(% cover in pools) Weir, no min flow 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0
(%) Weir w/ 100cfs 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0
Notes: Mean: Average of Min & Max

Min: Lowest percentage observed at all 4 sites
Max: Highest percentage observed at all 4 sites

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V4 Without weir .5B,.5A .2B,.8A .1.0A .5B,.5A .2B,.8A 1.0A 1.0B .2B,.8A .5B,.5A 1.0B .2B,8A .5B,.5A
(substrate type) Weir, no min flow .5B,.5A .2B,.8A .1.0A .5B,.5A .2B,.8A 1.0A 1.0B .2B,.8A .5B,.5A 1.0B .2B,8A .5B,.5A
(letter designation) Weir w/ 100cfs .5B,.5A .2B,.8A .1.0A .5B,.5A .2B,.8A 1.0A 1.0B .2B,.8A .5B,.5A 1.0B .2B,.8A .5B,.5A
Notes: Mean: A was only category observed.  Expert judgment of possible split between A&B, forcing entire range to be some portion A & some portion B

Min: A was only category observed.  Expert judgment of possible split between A&B, forcing entire range to be some portion A & some portion B
Max: A was highest category observed at all sites

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V5,12,14 Without weir 19.5 21.7 23.9 22.5 25.0 27.5 23.5 26.1 28.7 23.4 26.0 28.6
(avg. summer temp) Weir, no min flow 19.5 21.7 23.9 22.5 25.0 27.5 23.5 26.1 28.7 23.4 26.0 28.6
(degrees C) Weir w/ 100cfs 17.9 19.9 21.9 19.8 22.0 24.2 21.4 23.8 26.2 22.3 24.8 27.3
Notes: Mean: Same as District

Min: Mean-10%
Max: Mean+10%

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V6 Without weir 190.8 212.0 233.2 190.8 212.0 233.2 190.8 212.0 233.2 190.8 212.0 233.2
(length growing season)Weir, no min flow 190.8 212.0 233.2 190.8 212.0 233.2 190.8 212.0 233.2 190.8 212.0 233.2
(days) Weir w/ 100cfs 190.8 212.0 233.2 190.8 212.0 233.2 190.8 212.0 233.2 190.8 212.0 233.2
Notes: Mean: Same as District

Min: Mean-10%
Max: Mean+10%

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V7 Without weir 0.3 3.6 18.0 0.3 3.6 18.0 0.3 3.6 18.0 0.3 3.6 18.0
(turbidity) Weir, no min flow 0.3 3.6 18.0 0.3 3.6 18.0 0.3 3.6 18.0 0.3 3.6 18.0
(ppm) Weir w/ 100cfs 0.3 3.6 18.0 0.3 3.6 18.0 0.3 3.6 18.0 0.3 3.6 18.0
Notes: Mean: Same as District; highest value obtained from USGS

Min: Minimum values obtained from USGS
Max: Mean*5
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Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V8 Without weir 0.4 0.5 0.7 0.7 1.0 1.3 1.4 2.0 2.6 2.1 3.0 3.9
(avg.min DO) Weir, no min flow 3.2 4.5 5.9 4.6 6.5 8.5 4.7 6.7 8.7 4.8 6.8 8.8
(mg/liter) Weir w/ 100cfs 3.2 4.5 5.9 4.6 6.5 8.5 4.7 6.7 8.7 4.8 6.8 8.8
Notes: Mean: Data from other Federal agency reports

Min: Mean-30%
Max: Mean+30%

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V9, 13 Without weir 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
(salinity) Weir, no min flow 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
(ppt) Weir w/ 100cfs 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
Notes: Mean: Same as District; no data source to verify against

Min: Expert judgment; reasonable estimate
Max: Expert judgment; reasonable estimate

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V18 Without weir 21.4 30.5 39.7 29.9 42.7 55.5 14.9 21.3 27.7 25.6 36.6 47.6
(avg.current veloc) Weir, no min flow 21.4 30.5 39.7 29.9 42.7 55.5 14.9 21.3 27.7 25.6 36.6 47.6
(cm/s) Weir w/ 100cfs 21.4 30.5 39.7 29.9 42.7 55.5 14.9 21.3 27.7 25.6 36.6 47.6
Notes: Mean: Value District used

Min: Mean - 30%; close to range of observed minimum values
Max: Mean + 30%; close to range of observed maximum values

 
Largemouth Bass

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V1 Without weir 50.0 77.5 100.0 50.0 55.0 100.0 50.0 95.0 100.0 50.0 97.5 100.0
(% pools) Weir, no min flow 50.0 77.5 100.0 50.0 55.0 100.0 50.0 95.0 100.0 50.0 97.5 100.0
(%) Weir w/ 100cfs 50.0 77.5 100.0 50.0 55.0 100.0 50.0 95.0 100.0 50.0 97.5 100.0
Notes: Mean: Same as District

Min: Lowest % observed at all 4 sites
Max: Highest % observed at all 4 sites

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V3, 4 Without weir 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0
(% pool cover) Weir, no min flow 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0
(%) Weir w/ 100cfs 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0 2.0 8.5 15.0
Notes: Mean: Average of Min & Max

Min: Lowest percentage observed at all 4 sites
Max: Highest percentage observed at all 4 sites

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V6 Without weir 1.0A .1B,.9A .3B,.7A 1.0A .1B,.9A .3B,.7A 1.0A .2B,.8A .4B,.6A 1.0A 2B,.8.A .4B,.6A
(min.DO duirng sum) Weir, no min flow .5B,.5C 1.0C .9C,.1D .5B,.5C 1.0C .9C,.1D .5B,.5C 1.0C .9C,.1D .5B,.5C 1.0C .9C,.1D
(letter designation) Weir w/ 100cfs .5B,.5C 1.0C .9C,.1D .5B,.5C 1.0C .9C,.1D .5B,.5C 1.0C .9C,.1D .5B,.5C 1.0C .9C,.1D
Notes: Mean: Expert judgment.  A was only category observed for w/o project conditions, C was only category estimated for both w/ project conditions

Min: Expert judgment.  A was only category observed for w/o project conditions, C was only category estimated for both w/ project conditions
Max: Expert judgment.  A was only category observed for w/o project conditions, C was only category estimated for both w/ project conditions
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Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V7 Without weir .8C,.2B 1.0C 1.0C .8C,.2B 1.0C 1.0C .8C,.2B 1.0C 1.0C .8C,.2B 1.0C 1.0C
(pH) Weir, no min flow .8C,.2B 1.0C 1.0C .8C,.2B 1.0C 1.0C .8C,.2B 1.0C 1.0C .8C,.2B 1.0C 1.0C
(letter designation) Weir w/ 100cfs .8C,.2B 1.0C 1.0C .8C,.2B 1.0C 1.0C .8C,.2B 1.0C 1.0C .8C,.2B 1.0C 1.0C
Notes: Mean: Same as District

Min: Expert judgment
Max: Highest possible category

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V8,9,10 Without weir 19.5 21.7 23.9 22.5 25.0 27.5 23.5 26.1 28.7 23.4 26.0 28.6
(avg.summer temp) Weir, no min flow 19.5 21.7 23.9 22.5 25.0 27.5 23.5 26.1 28.7 23.4 26.0 28.6
(degrees C) Weir w/ 100cfs 17.9 19.9 21.9 19.8 22.0 24.2 21.4 23.8 26.2 22.3 24.8 27.3
Notes: Mean: Same as District (checked for accuracy against TVA reports)

Min: Mean-10%
Max: Mean+10%

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V11 Without weir 1.0C 1.0C .8C,.2A 1.0C 1.0C .8C,.2A 1.0C 1.0C .8C,.2A 1.0C 1.0C .8C,.2A
(turbidity) Weir, no min flow 1.0C 1.0C .8C,.2A 1.0C 1.0C .8C,.2A 1.0C 1.0C .8C,.2A 1.0C 1.0C .8C,.2A
(letter designation) Weir w/ 100cfs 1.0C 1.0C .8C,.2A 1.0C 1.0C .8C,.2A 1.0C 1.0C .8C,.2A 1.0C 1.0C .8C,.2A
Notes: Mean: Same as District

Min: Lowest possible category
Max: Expert judgment

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V12, 13 Without weir 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
(salinity) Weir, no min flow 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
(ppt) Weir w/ 100cfs 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
Notes: Mean: Same as District; no data source to verify against

Min: Expert judgment; reasonable estimate
Max: Expert judgment; reasonable estimate

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V15 Without weir .2C,.8D 1.0D 1.0D .2C,.8D 1.0D 1.0D .2C,.8D 1.0D 1.0D .2C,.8D 1.0D 1.0D
(substrate type) Weir, no min flow .2C,.8D 1.0D 1.0D .2C,.8D 1.0D 1.0D .2C,.8D 1.0D 1.0D .2C,.8D 1.0D 1.0D
(letter designation) Weir w/ 100cfs .2C,.8D 1.0D 1.0D .2C,.8D 1.0D 1.0D .2C,.8D 1.0D 1.0D .2C,.8D 1.0D 1.0D
Notes: Mean: Same as District

Min: Expert judgment
Max: Highest possible category

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V16, 18 Without weir 0.5 0.8 1.0 0.6 0.9 1.2 1.0 1.4 1.9 0.4 0.6 0.8
(avg.water flow) Weir, no min flow 0.5 0.8 1.0 0.6 0.9 1.2 1.0 1.4 1.9 0.4 0.6 0.8
(m) Weir w/ 100cfs 0.5 0.8 1.0 0.6 0.9 1.2 1.0 1.4 1.9 0.4 0.6 0.8
Notes: Mean: Number District used (from TVA reports)

Min: Mean - 30%; close to range of observed minimum values
Max: Mean + 30%; close to range of observed maximum values

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V17 Without weir 0.5 0.8 1.0 0.6 0.9 1.2 1.0 1.4 1.9 0.4 0.6 0.8
(max water fluct.) Weir, no min flow 0.5 0.8 1.0 0.6 0.9 1.2 1.0 1.4 1.9 0.4 0.6 0.8
(m) Weir w/ 100cfs 0.5 0.8 1.0 0.6 0.9 1.2 1.0 1.4 1.9 0.4 0.6 0.8
Notes: Mean: Number District used (from TVA reports)

Min: Mean - 30%; close to range of observed minimum values
Max: Mean + 30%; close to range of observed maximum values



Risk and Uncertainty Analysis Procedures
for the Evaluation of Environmental Outputs

123

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V20 Without weir 21.4 30.5 39.7 29.9 42.7 55.5 14.9 21.3 27.7 25.6 36.6 47.6
(max.current veloc.) Weir, no min flow 21.4 30.5 39.7 29.9 42.7 55.5 14.9 21.3 27.7 25.6 36.6 47.6
(cm/s) Weir w/ 100cfs 21.4 30.5 39.7 29.9 42.7 55.5 14.9 21.3 27.7 25.6 36.6 47.6
Notes: Mean: Avg. values from data sheets

Min: Mean - 30%; close to range of observed minimum values
Max: Mean + 30%; close to range of observed maximum values

Site 1 Site 2 Site 3 Site 4
Alternative Min Mean Max Min Mean Max Min Mean Max Min Mean Max

V22 Without weir 0.3 0.6 0.8 0.3 0.6 0.8 0.3 0.6 0.8 0.3 0.6 0.8
(stream gradient) Weir, no min flow 0.3 0.6 0.8 0.3 0.6 0.8 0.3 0.6 0.8 0.3 0.6 0.8
(m/km) Weir w/ 100cfs 0.3 0.6 0.8 0.3 0.6 0.8 0.3 0.6 0.8 0.3 0.6 0.8
Notes: Mean: Same as District

Min: Mean - 50%; close to range of observed minimum values
Max: Mean + 50%; close to range of observed maximum values


